
4) Enhancer/promoter-specificity of adenovirus vectors
 

To examine the enhancer/promoter-specificity of vectors,FU97 and MKN28
 

were infected with AdAFPlacZ,andβ-galactosidase activity was determined 24 h
 

later. X-gal staining revealed that β-galactosidase activity was evident in FU97
 

but not in MKN28(Fig.51B and Suppl.Fig.3C). Since sensitivity to adenovirus
 

vectors of MKN28 exceeded that of FU97,it is considered that the lacZ gene was
 

driven by the AFP enhancer/promoter of the vector exclusively in the AFP-

producing cell line. When the vector was infected at 10,10,10,and 10 MOI,29.

67±1.86%, 9.67±1.16%, 4.00±1.00%, and 1.33±0.33% of FU97 cells stained blue.

The positivity was low in comparison with the findings when Adex1CAlacZ was
 

infected, which suggested the difference in promoter activity between the AFP
 

enhancer/promoter and the CAG promoter.
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Fig. 51 Infectivity of Adex1CAlacZ (A)and AdAFPlacZ (B)in FU97(●)and MKN28(○)

cells.β-galactosidase activity was determined by X-gal staining at 24 h later.
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5) Cytotoxicity of AdAFPtk and GCV
 

FU97 was infected with AdAFPtk at 0,10,30,or 100 MOI,or exposed to 0,1,

10,10,10,or 10 μM of GCV. When the viable cells were counted 8 days later,100
 

MOI of AdAFPtk and over 100μM of GCV had severe cytopathic effects on the
 

cells,respectively(Fig.52). Thus,we used AdAFPtk at 0.3,3,10,and 30 MOI,and
 

GCV at 0,1,and 10μM,in the following experiments.

6) Effects of the suicide gene therapy
 

Combined use of AdAFPtk (3,10,and 30 MOI)and GCV (1 and 10μM)signifi-

cantly reduced the number of viable FU97 cells in comparison with findings when
 

AdAFPlacZ and GCV were combined (Fig.53). These results suggest that trans-

duction of the HSVtk gene increased the cytotoxicity of GCV in the AFP-producing
 

cell line. In addition,the effects depended on the dose of either AdAFPtk or GCV.

Contrarily,no similar effect was evident regarding MKN28,even when AdAFPtk at
 

30 MOI and 10μM of GCV were used in combination (Fig.54).

7) Summary and perspectives
 

Gastric adenocarcinoma producing AFP is one of the poor-prognostic neo-

plasms. In searches for new therapeutic strategies against AFP-producing gastric
 

cancer,we examined the efficacy of suicide gene therapy which has been effective
 

on AFP-producing hepatoma. The HSVtk gene was transduced into an AFP-

producing gastric adenocarcinoma cell line,FU97,using adenovirus vectors carry-

ing the constructed AFP enhancer/promoter element,followed by GCV administra-

tion. Expression of the transgene was evident in FU97 but not in an AFP-

nonproducing gastric adenocarcinoma cell line, MKN28,which meant that AFP
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Fig. 52 Cytopathic effects of AdAFPtk (A) and GCV (B) to FU97. Eight days later,

viable cells were counted and each ratio to that of cultured FU97 without
 

AdAFPtk or GCV were calculated.
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enhancer/promoter-specific transcriptional targeting was achieved by the vectors.

Viability of FU97 but not of MKN28 significantly decreased after the suicide gene
 

therapy in vitro.

Therapeutic application of the AFP enhancer/promoter-specific transfer of the
 

HSVtk gene followed by GCV administration against AFP-producing gastric cancer
 

deserves attention and further research.

Role of Matrix Metalloproteinases and Related Tissue Inhibitors
 

in Cancer Tissues
 

1. Clarification of the active gelatinolytic sites in human ovarian neoplasms
 

using  zymography(120)

1) Introduction
 

Matrix metalloproteinases(MMPs)are zinc endopeptidases required for degra-

Fig. 53 Effects of suicide gene therapy. FU97 was infected with AdAFPtk (closed
 

columns)or control AdAFPlacZ (open columns)at MOI of 30(A),10(B),3(C)or
 

0.3(D)followed by GCV administration. At day 7 after addition of GCV,viable
 

cells were counted and each ratio to that of AdAFPtk infected FU97 without
 

GCV were calculated. :p＜0.05.
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dation of the extracellular matrix in tumor growth and invasion(121). Expression
 

of these enzymes in human malignant neoplasms has been studied immunohisto-

chemically (IH),by in situ hybridization (ISH)and using zymography (ZG)(122-

124). The matriolytic activity in vivo exerted by MMPs is determined by multifari-

ous interactions among proteolytic activators and specific inhibitors such as tissue
 

inhibitors of MMPs (TIMPs) (125-127). Neither IH, ISH, or ZG pinpoints the
 

localization of matriolytic activity in vivo;IH detects MMPs by their antigenicity,

with both the proenzymatic and activated MMPs,as well as both the TIMP-bound
 

and -unbound forms,being stained equivalently. Similarly,ISH detects the loca-

tion of mRNA expression, but not the activity itself, and ZG detects matriolytic
 

activity of MMPs both in TIMP-bound and -unbound forms when gel electrophor-

esis is used. The methodological properties listed above limit our understanding of
 

the role of matriolytic activity in vivo,since they do not identify cellular localiza-

tion of true matriolytic activity. The newly developed in situ zymography(ISZ),

using a gelatin film over unfixed frozen tissues,addresses this issue by detecting in
 

situ gelatinolytic activity on tissue sections (128,129). ISZ detects the sum of the
 

following in vivo activities not saturated by TIMPs;a weak gelatinolytic activity
 

of the proenzymatic MMPs, a strong activity of the activated MMPs, and

 

Fig. 54 No effect of the suicide gene therapy using AdAFPtk and GCV in MKN28, a
 

gastric adencarcinoma cell line without AFP producution.
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gelatinolytic activities of enzymes other than MMPs. We used ISZ to determine
 

the in situ localization of gelatinolytic activity in ovarian tumors and the adjacent
 

tumor stroma. Different grades or histologic subtypes of ovarian tumors may have
 

different in situ gelatinolytic activities,as has been suggested by IH,ISH,and ZG

(122-124). Thus,our important hypothesis as regards in situ gelatinolytic activity
 

is that the location of activity may be variable,depending on histologic grades and/

or subtypes.

2) zymography(ISZ)

ISZ detects the in situ gelatinolytic activity as areas unstained by Amido Black
 

10B. Treatment of the films with 100 mM of 1,10-phenanthroline suppressed the
 

unstained areas in all adenomas and borderline tumors,but it did not completely
 

suppress them in most of the adenocarcinomas. The unstained areas were dose-

dependently inhibited in preincubation of tumor tissues with CGS27023A (130);in
 

Case 4 (mucinous adenocarcinoma) and in Case 13 (clear cell adenocarcinoma),

gelatinolysis was considerably blocked at 50μM of CGS27023A,and the activity
 

was almost completely inhibited at 100 μM. Thus, the activity was attributed
 

mainly to MMPs.

The correlation between significant gelatinolysis and histological subtypes is
 

shown in Table 7. In normal ovaries, corpus luteum cells showed obvious
 

gelatinolysis (Fig. 55). Capillary endothelial cells and granulosa cells expressed
 

weak gelatinolysis. Primary oocytes and corpus albicans showed no gelatinolysis.

In four benign tumors,no complete or obvious gelatinolysis was seen,but in one
 

mucinous adenoma,a weak gelatinolysis was seen in the tumor cytoplasm.

Malignant neoplasms showed various gelatinolytic activities. In two clear cell
 

and four mucinous adenocarcinomas,the complete to obvious gelatinolytic activity
 

had pattern A (Fig.56A and B),which was not seen in those of serous adenocar-

cinomas or borderline tumors,although a scattered weak activity was seen in the
 

tumor cytoplasm of serous adenocarcinomas (5/6). In four mucinous and three
 

serous adenocarcinomas and one mucinous and one serous borderline tumors,

Table 7 Significant gelatinolysis in tissue specimens detected by in situ zymography.

Cellular and Tissue Localization of Gelatinolysis
 

Histology

(no.of cases)

Tumor
 

Cytoplasm
 
Tumor-Stromal

 
Junction

 
Tumor
 

Stroma
 

Cystic
 

Fluid
 

Mucinous Ca (6) 4/6  1/6  0/6  4/6
 

Serous Ca (6) 0/6  1/6  5/6  3/6
 

Clear cell Ca (6) 2/6  0/6  6/6  0/6
 

Mucinous borderline tumor(2) 0/2  1/2  0/2  1/2
 

Serous borderline tumor (2) 0/2  0/2  1/2  1/2
 

Mucinous adenoma (3) 0/3  0/3  0/3  0/3
 

Serous adenoma (1) 0/1  0/1  0/1  0/1
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pattern D was seen,and was usually stronger than that in the cytoplasm of tumor
 

cells lining the cysts. One mucinous and one serous adenocarcinoma and a
 

mucinous borderline tumor had gelatinolytic activity of pattern B (Fig.56C and D).

Histologic examination revealed mucin prolapse into the stroma at the tumor-

stromal junction and silver staining showed a partially disrupted basement mem-

brane. Most serous and all clear cell adenocarcinomas expressed strong
 

gelatinolysis and had pattern C,especially where tumor cells were dispersed in the
 

desmoplastic stroma (Fig.56E and F).

3) Immunohistochemistry(IH)

IH showed that MMP-2,MMP-9 and MMP-7 were stained in the epithelial cells
 

and/or stroma of carcinomas and borderline tumors (Table 8). MMP-9 was also
 

positive in some capillary endothelial cells. In mucinous carcinomas and border-

line tumors, MMP-7 was positive in the epithelium (4/5). In one mucinous
 

adenocarcinoma,MMP-9 was stained both in the epithelium and junctional stroma.

Most mucinous carcinomas and borderline tumors showed weak and scattered
 

positivity for MMP-2 and/or MMP-9 in the epithelium. Two of three serous
 

adenocarcinomas stained for MMP-2 and MMP-9 both in tumor cells and desmo-

plastic stroma where tumor cells were diffuse,whereas papillary tumor nests with
 

a scant stroma showed weak or no staining. In two of five clear cell adenocar-

cinomas, MMP-9 and MMP-7 were positive in the tumor cytoplasms, especially
 

where tumor cells were dispersed. MMP-2 was positive in the hyalinized stroma in
 

one clear cell adenocarcinoma. Normal ovary and mucinous adenomas showed no
 

significant staining,except for staining for MMP-7 in the cytoplasm and for MMP-2
 

in the stroma in one mucinous adenoma.

4) Summary and perspective
 

Tissues from 26 human ovarian common epithelial tumors were examined to
 

determine where and how gelatinolytic activity was present,in relation to tumor-

stromal interaction and histologic types. For this purpose,we made use of in situ
 

zymography,a newly developed technique using gelatin-coated film. Gelatinolytic

 

Fig. 55 In situ gelatinolytic activity in a corpus luteum. Granulosa lutein cells (A:HE
 

staining)showed gelatinolysis (B:in situ zymography).
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Fig. 56 Different gelatinolytic patterns shown with in situ zymography. Three different
 

patterns,cytopathic pattern(A and B),tumor-stromal junction pattern(C and D,

arrows indicate junction)and stromal pattern (E and F,S indicates stroma and
 

T indicates tumor),were observed.A,C and E are HE staining and B,D and F
 

are in situ zymography.

Table 8 Summary of immunohistochemical location of MMPs in ovarian tumors.

MMP-2  MMP-7  MMP-9

 

Histology(no.of cases)

Tumor
 

Cytoplasm Stroma
 
Tumor
 

Cytoplasm Stroma
 
Tumor
 

Cytoplasm Stroma
 

Mucinous Ca (4) 1/4  0/4  3/4  0/4  1/4  1/4
 

Serous Ca (3) 2/3  2/3  2/3  0/3  2/3  2/3
 

Clear cell Ca (5) 1/5  1/5  2/5  0/5  2/5  0/5
 

Mucinous borderline tumor (1) 0/1  1/1  1/1  0/1  0/1  0/1
 

Serous borderline tumor (2) 1/2  1/2  1/2  0/2  1/2  0/2
 

Mucinous adenoma (2) 0/2  1/2  1/2  0/2  0/2  0/2
 

Normal ovary(1) 0/1  0/1  0/1  0/1  0/1  0/1
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activity was evident in ovarian carcinomas and in borderline tumors. Benign
 

tumors had no or only weak activity. Four tissue localization patterns of
 

gelatinolysis were identified:pattern A)tumor cytoplasm,pattern B)tumor-stromal
 

junction,pattern C)stroma,and pattern D)cystic fluid. Mucinous cystadenocar-

cinomas showed A and/or D patterns. One mucinous and one serous adenocar-

cinoma and one mucinous borderline tumor had a B pattern. Most serous and all
 

clear cell adenocarcinomas showed strong gelatinolysis of C pattern,especially in
 

the desmoplastic stroma,an area where the tumor cells were dispersed. Immuno-

histochemically in 12 adenocarcinomas and 3 borderline tumors, the tumor cyto-

plasm was positive for MMP-2 (5 cases),MMP-7 (9 cases)and MMP-9 (6 cases).

Stromal components were positive for MMP-2 in 5 and for MMP-9 in 3 cases,but
 

not for MMP-7. MMP antigens were mostly distributed in an almost identical
 

pattern with that seen with in situ zymography.In situ zymography clarified the
 

cellular localization of active gelatinolysis in human ovarian neoplasms,findings
 

that support the view that interaction between tumor and stroma is critical for
 

tumor growth. This newly developed method contributes to a better understanding
 

of biological features of ovarian malignancies.

2. Expression of matrix metalloproteinases and related tissue inhibitors in the
 

cyst fluids of ovarian mucinous neoplasms (131)

1) Introduction
 

MMPs are zinc endopeptidases required for degradation of the extracellular
 

matrix during normal embryogenesis and in tissue remodeling (132)and they also
 

play an important role in tumor growth,invasion and metastasis(121). MMPs are
 

classified according to substrate specificity, comprising collagenases (MMP-1, -8
 

and-13),gelatinases (MMP-2 and-9),stromelysins(MMP-3,-10 and-11)and others

(133,134). Studies on the expression of MMPs in human tumors have led to new
 

insights into biology of the lesions. At least focal disruptions of basement mem-

branes of epithelial ovarian tumor cells,as evidenced by histology and immunohis-

tochemistry for basement membrane materials,have been shown,and more impor-

tantly,the disruptions correlated with the expression of MMP-2 by tumor cells(135).

As the lysis of the basement membrane matrix is an initial step of cancer invasion
 

and metastasis,the expression of matrix proteinases by tumor cells has an obvious
 

importance in ovarian cancer biology. Expression of these enzymes in ovarian
 

cancers has also been shown in other studies (136, 137). Although the role of
 

proteolysis has been studied also in ovarian carcinoma cell lines and in ascites(138,

139), the relationship between species or activities of tumor-derived MMPs and
 

biologic aggressiveness of ovarian tumors has remained largely unclear.

Proteinases derived from tumor cells and secreted to the stroma play an important
 

role in the establishment of gross patterns of ovarian epithelial neoplasms and such
 

proteinases may be detected in cystic fluids without being intervened by normal
 

tissue-derived proteinases. Therefore, cystic fluids appear to be an appropriate
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source in analyzing specificity and interrelationship of tumor-derived enzymes with
 

proteolytic or anti-proteolytic activity. In addition,proteolytic activities in cystic
 

fluids have obvious implications,per se,in the event of rupture and dissemination
 

of cystic lesions. The aim of the present study, therefore, is to analyze species,

interrelationship and clinical significance of these enzymes in ovarian mucinous
 

tumors.

2) Detection of gelatinolytic activity in cystic contents and cytoplasm of
 

mucinous tumor cells by  zymography
 

In situ zymography clearly demonstrated gelatinolytic activity within cyto-

plasm of neoplastic epithelial cells(Suppl.Fig.4). Matriolytic activity of mucinous
 

contents was even more intense. Malignant tumor cells exhibited a stronger
 

activity than benign ones did. There were scattered,weak activity in the tumor
 

stroma and the activity was not so intense as neoplastic cells and mucinous fluids.

The gelatinolytic activity was inhibited dose-dependently with a preincubation of
 

tumor tissues with CGS27023A. Gelatinolytic activity was blocked in more than
 

half of the tumor cells at 50 μM of CGS27023A and the activity was almost
 

completely inhibited at 100μM.

3) Metalloproteinase activity in mucinous cystic fluids by zymography
 

The enzymatic activity in mucinous ovarian cystic fluids was examined using
 

gelatin and casein zymography. In gelatin zymography, 40 times dilution was
 

required to obtain unequivocal bands in all carcinoma/borderline fluids and in most
 

adenoma fluids,whereas in the fluids from 4 of the adenomas,20 times dilutions was
 

sufficient. In casein zymography, all carcinomas/borderline fluids required 10
 

times dilution,and adenoma fluids required 2-5 times dilution. Gelatin zymogra-

phy was primarily concerned with two gelatinolytic enzymes with approximate
 

molecular masses of 92 and 72 kDa, which correspond to MMP-9 and MMP-2,

respectively. In gelatin zymography,the major concerns were trypsin and MMP-7
 

at 25/23 (140) and 29 kDa, respectively. Western blotting confirmed that the
 

activity at these molecular weights had antigenic determinants for MMP-9 (92 kDa),

MMP-2(72 kDa),MMP-7(29 kDa),and trypsin (25 and 23 kDa).

In all carcinomas and borderline fluids, both MMP-9 and MMP-2 activities
 

were clearly detected (Fig.57). The MMP-9 band was also detactable in 12 of 15
 

adenoma fluids. When analyzed by densitograph,the pattern of these gelatinolytic
 

activities differed depending on degree of malignity. In carcinoma/borderline
 

fluids, both proenzymatic and activated MMP-9 (124) were detected. In one
 

mucinous carcinoma,the MMP-9 band was completely shifted toward the size for
 

the activated form,and no proenzymatic form was detected. Activated MMP-9
 

was detecyted in 7 of 15 adenoma fluids, although its presence was weak when
 

compared to the findings in carcinoma/borderline category. The frequency and
 

clarity of activated MMP-9 was the highest in the carcinoma category,followed by
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the borderline category. MMP-2 activity was almost ubiquitously present through-

out the cystic lesions, including the control functional cysts. Activated MMP-2
 

was frequently evident and could appear in any histological category.

Trypsin and MMP-7 were detected in cystic fluids by casein zymography(Fig.

58). Both positive rates of trypsin and MMP-7 presence in carcinoma and border-

line fluids were higher than that of adenoma but not significant,statistically(Table
 

9). On the other hand,MMP-3 was detected in all carcinomas and borderline fluids
 

and the positive rate was statistically significant compared with that of adenoma

(p＜0.01). In the control group, there was no evidence of the production of any
 

these caseinolytic enzymes.

4) Quantification of MMPs and TIMPs in mucinous cystic fluid by ELISA
 

The observed concentrations of MMP-2,MMP-9, TIMP-1 and TIMP-2 were
 

shown in Table 10. The concentration of MMP-9 was highest in mucinous car-

Fig. 57 Detection of MMP activity by gelatin zymography in the cyst fluids of ovarian
 

mucinous tumors.92 kDa is MMP-9 and 72 kDa is MMP-2. :activated MMP-9,

:activated MMP-2. Lanes 1 and 2 are mucinous adenocarcinomas, lane 3 is
 

mucinous borderline tumor,and lanes 4 and 5 are mucinous cystadenomas.

Fig. 58 Detection of MMP-7 and trypsin by casein zymography in the cyst fluids of
 

ovarian mucinous tumors. MMP-7 is detected at 29 kDa and its activated form
 

is 19 kDa.25 and 23 kDa are trypsin type 2 and type 1,respectively. Lanes 1 to
 

4 are mucinous cystadenomas and lane 5 is mucinous borderline tumor.
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cinomas,followed by borderline tumors. TIMP-1 was highest in borderline tumors
 

and was also higher in carcinoma than it was in adenoma fluids. Both MMP-9 and
 

TIMP-1 concentrations were statistically higher in carcinoma/borderline fluids
 

than in adenoma fluids (p＜0.05). Mucinous carcinomas were the highest level of
 

MMP-2 contents,although no significant difference was seen among the categories.

TIMP-2 was less prevalent in carcinoma/borderline fluids than in adenoma fluids.

The molar ratios of TIMP-1/MMP-9 and TIMP-2/MMP-2 were shown in Table
 

11. For TIMP-1/MMP-9,this ratio was lowest in mucinous carcinomas,followed
 

by borderline tunors. The TIMP-2/MMP-2 ratio was also lower in carcinoma/

borderline tumors than in adenomas.

5) Summary and perspectives
 

Expansion of ovarian cystic neoplasms often involves invasion to and destruc-

tion of extracellular matrix. We examined species,interrelationship and clinical
 

significance of MMPs and TIMPs in neoplastic cysts of ovarian mucinous tumors,

Table 9  Summary of the positive rates of MMP-3,MMP-7 and Trypsin in mucinous
 

cystic fluids.

Histologic category

(number)

MMP-3
 

positive rate(%)

MMP-7
 

positive rate(%)

Trypsin
 

positive rate(%)

Carcinoma (8) 100  62.5  37.5
 

Borderline tumor (3) 100  66.7  33.3
 

Adenoma (15) 53.3  40.0  13.3
 

Control cyst (7) 0  0  0

 

Table 10 Summary of TIMP and MMP concentrations in mucinous cystic fluids(ng/ml).

Histologic category(number) MMP-9 (range) MMP-2(range) TIMP-1(range) TIMP-2(range)

Carcinoma (8) 1968± 2706

(300－6000)

1411± 1697

(200－4300)

17023± 18213

(5500－52000)

183± 225

(8－640)

Borderline tumor (3) 926± 460

(480－1400)

499 ± 166

(384－690)

22183± 8982

(16100－32500)

70.7± 47.4

(18－110)

denoma (15) 423± 720

(0－2600)

544± 352

(35－1250)

6563± 5163

(1800－19000)

343± 234

(15－760)

Control cyst (7) 0.264± 0.452

(0－0.95)

1005± 1113

(350－3500)

2777± 933

(1550－4150)

186± 151

(15－760)

p＜0.05 in a vs b,c vs d,e vs d,and f vs g.

Table 11 Summary of TIMP/MMP molar ratios in mucinous cystic fluids.

Histologic category(number) TIMP-1/MMP-9 ratio (range) TIMP-2/MMP-2 ratio (range)

Carcinoma (5) 55.2± 27.2(27.5－91.5) 1.21± 1.21 (0.04－3.09)

Borderline tumor (3) 104.1± 96.2(40.7－214.8) 0.46± 0.27(0.16－0.68)

Adenoma (15) 1670.0± 3414.7(4.3－12689.7) 2.54± 1.50(0.52－5.77)

Control cyst (7) 9591.5± 603.4(0－10018.1) 0.90± 0.64(0.52－1.05)

p＜0.05 in a vs c,p＜0.01 in b vs c.
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using zymography(in situ zymography,gelatin zymography and casein zymogra-

phy),enzyme-linked immunosorbent assay and western blotting. Matriolytic activ-

ity was demonstrated within cytoplasm of mucinous epithelial lining cells by in situ
 

zymography, attributing the origin of intracystic matriolytic activity mainly to
 

these cells. The concentration of MMP-9 was statistically higher in mucinous
 

carcinomas(p＜0.05)than in benign and borderline ones. TIMP-1,which combines
 

with MMP-9,was also higher (p＜0.05)in malignancies than in benign ones. The
 

ratios of MMP-9/MMP-2 and the occurrence of activated forms of MMP-9 and
 

MMP-2 correlated with the degree of malignancy, whereas the molar ratios of
 

TIMP-1/MMP-9 and TIMP-2/MMP-2 were higher in benign ones. Expressions of
 

MMP-3 or trypsin in the fluids were frequently accompanied by activation of
 

MMP-7 and MMP-9. These observations verified the usefulness of ovarian cystic
 

fluids in the analysis of matriolytic activity of ovarian cystic neoplasms. In
 

addition, they support the concept that the presence and interactions of tumor-

derived enzymes with matriolytic and antimatriolytic activity are modulators of
 

growth pattern and biologic aggressiveness of cystic ovarian tumors.

3. Expression of matrix metalloproteinase in the fluids of renal cystic lesions

(141)

1) Introduction
 

Recent progress in radiological imaging system increased clinical approaches
 

to cope with asymptomatic renal lesions including benign cysts and renal cell
 

carcinomas. Available modalities include contrast media,rapid sequence CT and
 

MR imaging. Radiological approaches alone do not always diagnosis of cystic
 

renal lesions (142). According to the Bosniak classification (143),a certain extent
 

of malignant cystic disease is included in categories II and III(143,144),and in such
 

cases surgical approaches may be required to determine adequate treatment.

Though cytology and serum tumor markers have also been studied,their value in
 

making a diagnosis is limited to cases of renal malignancy(145,146).

Matrix metalloproteinases (MMPs) are zinc endopeptidases required to
 

degrade the extracellular matrix (132)in embryogenesis and tissue remodeling as
 

well as in tumor progression (121). MMPs are classified according to substrate
 

specificity. MMP categories include collagenases(MMP-1,-8 and-13),gelatinases

(MMP-2 and-9),stromelysins(MMP-3,-10 and-11)and others(121). Some species
 

of MMPs have been reported to play an important role in renal malignancies(147-

149). Although analyses of proteolytic molecules in blood plasma or homogenized
 

tumor tissues can explain in part the tumor progression, they are modified by
 

nonneoplastic fibroblasts,inflammatory cells and plasma derived MMPs(148,150).

Recent studies showed that proteinases derived from tumor cells can be detected in
 

fluid of cystic lesions (120, 131), therefore cyst fluid can be used to analyze
 

matriolytic activity of the local lesions.

As hypothesized that matriolytic enzymes might be expressed in renal cyst fluid
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and would specifically reflect biological activities in accordance with malignancy.

We investigated the expression of MMPs in the cyst fluids of the kidney, using
 

gelatin zymography and enzyme linked immunosorbent assay.

2) Determination of metalloproteinases in cyst fluid of the human kidney
 

In gelatin zymography,two gelatinolytic enzymes of an approximate molecular
 

mass of 92kDa and 72kDa,corresponding to MMP-9 and MMP-2 respectively,were
 

the major concerns (Fig. 59). Western blotting confirmed that the proteolytic
 

bands were immunoreactive,and the patterns were identical. In gelatin zymogra-

phy,20-50 times dilution was required to obtain unequivocal bands in all carcinoma
 

fluids,whereas in most benign cysts,1-2 times dilution was sufficient. Zymogra-

phy was repeated for each case when the protein concentration was adjusted to 1-5
 

mg/dl until expressions of MMPs were confirmed. The MMP-2 band was detected
 

ubiquitously in all but two case of cystic renal disease and these proved to be benign
 

cysts of acquired cystic disease of the kidney(ACDK). MMP-9 was detected in 7
 

of 8(87.5%)cystic renal cell carcinomas while 12 of 14 benign cysts were negative
 

for MMP-9 (p＜0.01)(Table 12). The activated forms(131)of MMP-9 (88 kDa)and
 

MMP-2(68 kDa)were not detected in any specimen (Fig.59).

Fig. 59  Detection of MMP expression in cystic fluids of kidney diseases with cystic
 

formation. Case no.10 and 11 are benign simple cysts,and case no.18 and 20 are
 

cystic renal cell carcinomas.

Table 12 Positive rate of MMP-2 and 9 in renal cystic fluids determined on gelatin
 

zymography.

No.Matrix Metalloproteinase(%)
Clinicopathological Category  No.Cases  2  9

 
Benign cyst,including simple cysts

＋acquired cystic disease of kidney
 

14  12(85.7) 2(14.3)

Renal cell Ca,clear cell histology  8  8(100) 7(87.5),p＜ 0.01 vs.Cyst
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3) Concentration of MMP-2 and MMP-9 in renal cyst fluid determined by ELISA
 

The concentrations of MMP-2 and MMP-9 were statistically higher in cystic
 

renal cell carcinomas than in benign lesions(p＜0.01,p＜0.01,respectively)(Fig.60).

In two benign cysts associated with ACDK,in which the MMP-2 band was not seen
 

in gelatin zymography, the concentration of MMP-2 was also undetectable.

MMP-2 concentrations in all but one benign cyst were lower than 100 ng/ml,while
 

in 7 of 8 malignant cysts they were higher than 100 ng/ml. MMP-9 concentrations
 

in malignant cyst fluids were between 1.0 and 400 ng/ml. All three Bosniak-IV
 

cases showed over 10 ng/ml,while most benign cysts were below detectable levels.

The highest concentration in benign cases was 7 ng/ml (Bosniak-I).

4) Summary and perspectives
 

Cystic lesions of the kidney are common conditions usually diagnosed accord-

ing to imaging studies. Although simple cysts are easy to diagnose,the preoper-

ative diagnosis of complicated cystic lesion can be difficult. There has been little
 

information on the biological activity of cyst fluid and the association with
 

clinicopathological findings. We analyzed the expression of MMPs in cyst fluids
 

of benign and malignant renal cystic lesions in an attempt to clarify matriolytic
 

activity in the cyst. Twenty-two cyst fluids from renal cystic lesions (14 benign
 

cysts and 8 cystic renal cell carcinomas)were included in this study. The presence
 

of MMP-2 and MMP-9 in fluids was examined using gelatin zymography and
 

ELISA. Expression of MMP-2 was ubiquitously observed zymographically except
 

for two benign cysts associated with ACDK. MMP-9 was detected in 7 of 8
 

carcinomas, but only in 2 of 14 benign cysts (p＜0.01). Concentrations of both
 

MMP-2 and MMP-9 were significantly higher in cystic carcinomas than in benign
 

cysts (p＜0.01,p＜0.01,respectively).

Our data support the notion that matriolytic enzymes such as MMP-2 and

 

Fig. 60 Correlation of MMP-2 and 9 in renal cystic fluids on ELISA. Bars indicated
 

mean value.
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MMP-9 are expressed in cyst fluid of renal cystic diseases. There is a significant
 

difference of MMPs concentrations between benign cysts and cystic renal cell
 

carcinomas. Presence of these enzymes into cyst fluid may reflect aggressiveness
 

of cystic renal cell carcinoma. These observations contribute to a better under-

standing of biological behavior in human renal cystic changes.
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