

博士（薬学）中川 勉

学位論文題名

Regulatory role of brain-derived neurotrophic factor (BDNF) in glucose and energy metabolism

(脳由来神経栄養因子 (BDNF) による
糖・エネルギー代謝の制御に関する研究)

学位論文内容の要旨

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. It is well recognized that diabetes mellitus is a major health problem, since long-term hyperglycemia causes severe diabetic complications.

Neurotrophins are important regulators of nervous systems. Brain-derived neurotrophic factor (BDNF) enhances the survival and differentiation of several classes of neurons. In addition to the efficacy of BDNF in neurological disorders, we previously found that BDNF reduces food intake and blood glucose concentration in rodent obese diabetic models, such as C57BL/KsJ-*db/db* (*db/db*) mice. As an extension of that discovery, the author investigated the effect of BDNF on glucose and energy metabolism in several animal models.

The author applied a novel pellet pair-feeding apparatus and demonstrates that BDNF plays a regulatory role in glucose metabolism independently of appetite alteration in *db/db* mice. To evaluate the effect of BDNF on insulin action, BDNF was administered to streptozotocin-treated mice and the author found that BDNF itself does not lower the blood glucose concentration, but enhances insulin action. In addition to STZ mice, analyses of plasma insulin concentrations supported that the hypoglycemic action of BDNF was stronger in younger, more hyperinsulinemic *db/db* mice than older, less hyperinsulinemic mice. BDNF was thus seen to exert its hypoglycemic action most efficiently in *db/db* mice with sufficient plasma insulin levels. Chronic treatment of

BDNF significantly improved glucose tolerance of KK mice and ZF rats as evaluated by the oral glucose tolerance test and glucose clamp test respectively. These data clearly showed that BDNF ameliorated insulin resistance in animal models of impaired glucose tolerance (IGT) as well as overt diabetes.

In order to elucidate the action mechanism of BDNF, body temperature and oxygen consumption of *db/db* mice were measured to determine the role of BDNF in the regulation of energy metabolism. In spite of the reduced food intake, *db/db* mice given BDNF maintained nearly the same body temperature and metabolic rate as *ad libitum*-fed vehicle-treated mice. These results strongly suggest that BDNF enhances the expenditure of excess energy in *db/db* mice. In addition, intracerebroventricular administration of BDNF in doses as small as 15 μ g/mouse (approximately 300 μ g/kg, such dose was not effective when delivered peripherally) proved to be effective in lowering blood glucose concentrations. Therefore, it is reasonable to assume that when BDNF is administered subcutaneously, a small portion of the dose enters the brain and is directly responsible for lowering blood glucose concentration.

Obesity in rodents and humans is mostly associated with elevated plasma leptin concentrations, suggesting a new pathological concept of "leptin resistance". The author examined whether or not BDNF is capable of exerting its antiobesity and antidiabetic effects in leptin resistance models. BDNF could ameliorate obesity and diabetes in DIO and KKA^Y mice. These observations suggest that BDNF may be able to be used therapeutically in the treatment of obesity and diabetes of various causes. This study has also highlighted the differential mechanisms regulating antiobesity and antidiabetic effects of BDNF and leptin, thereby demonstrating that BDNF is a useful tool in investigating the molecular mechanism of leptin resistance.

学位論文審査の要旨

主査教授 有賀 寛芳

副査教授 野村 靖幸

副査助教授 大熊 康修

副査助教授 松本 健一

学位論文題名

Regulatory role of brain-derived neurotrophic factor (BDNF) in glucose and energy metabolism

(脳由来神経栄養因子 (BDNF) による
糖・エネルギー代謝の制御に関する研究)

脳由来神経栄養因子 (Brain-Derived Neurotrophic Factor: 以下BDNFと略) は、神経細胞の生存・維持に機能する神経栄養因子の一つである。BDNFの糖尿病性神経障害に対する有効性検討において、BDNFが遺伝的肥満糖尿病モデルであるdb/dbマウスに対して、摂食抑制作用および血糖降下作用を示すことが報告された。本研究では、BDNFの糖およびエネルギー代謝に対する作用を動物モデルを用いて詳細に検討した

1. 2型糖尿病モデルに対するBDNFの作用

db/dbマウスは飽食因子としてクローニングされたレプチンの受容体に変異を持つ自然発症2型糖尿病モデルであり、過食による肥満、高血糖が特徴である。BDNFをdb/dbマウスに投与した場合、摂食量抑制作用と血糖値降下作用が見られることが分かっていたが、この血糖降下作用はBDNFによる直接作用なのか、摂食量が減ったことによる2次的な作用であるのが不明であった。このため、新たに開発した同期方式ペレット供給装置を使用し、BDNFをdb/dbマウスに投与し検討したところ、BDNFは摂食抑制作用に依存しない血糖降下作用、db/dbマウスの脾臓中インスリン含量は有意な改善作用を有すること、また、グルカゴン含量についても有意な低下作用が認められた。更に脾臓の病理組織学的検討結果からも判断し、BDNFは2型糖尿病モデル動物に対して糖代謝改善作用及び脾臓の保護作用を有することが示された。

2. インスリン作用に対するBDNFの影響

BDNFの血糖降下作用におけるインスリンの役割を検討するため、インスリン分泌不全による1型糖尿病を惹起するモデルマウス (STZマウス) に対するBDNFの作用を検討したところ、BDNFはインスリンの感受性を亢進することにより糖代謝調節作用を示した。

3. Impaired Glucose tolerance (IGT) モデルに対するBDNFの作用

IGTモデル動物に対するBDNFの作用を検討するため、ZFラットにBDNFを1ヶ月間投与し、グルコースクランプ試験により耐糖能を評価したところ、IGTモデル動物に対し、耐糖能異常改善作用を有することが分かった。

4. BDNFの作用メカニズム解析

血中から消失したグルコースの流れを解析するため、エネルギー代謝に関する解析を行った。db/dbマウスを用いた検討において、BDNF投与群と摂餌量を同調させた対照群と摂餌量を同調させた対照群とを比較検討した結果、BDNFは肥満・糖尿病動物の血糖値を低下させるが、この時血中から消失するグルコースは脂肪組織などに蓄積されるのではなく、代謝され体外へ発散されることが示唆された。BDNFの中枢神経系（脳）を介した作用の有無を検討する為に、BDNFをdb/dbマウスに対して脳室内投与する検討し、末梢投与したBDNFは血液・脳関門を通過し、中枢神経系を介して糖・エネルギー代謝を制御していることが考えられた。

5. BDNFのレプチン抵抗性に対する作用

中枢神経系を介して糖・エネルギー代謝を制御するというレプチンの作用は、BDNFの作用と類似した点が多いことから、遺伝的には正常であるが高脂肪含有飼料を負荷することにより、肥満、耐糖能異常、レプチン抵抗性を呈することが知られているDiet-Induced Obesity (DIO)マウスを用いてBDNFのレプチン抵抗性に対する作用を検討した。通常飼料を摂取させたマウスにおいてはレプチンの投与により顕著な摂食抑制作用が認められたが、同量のレプチンをDIOマウスに投与しても摂食抑制作用は認められなかつたことから、DIOマウスにおいてはレプチン抵抗性が存在していることが確認できた。一方、通常飼料を摂取させたマウスにBDNFを投与しても摂餌量に変化は見られなかつたが、DIOマウスにBDNFを投与したところ顕著な摂食抑制作用が認められた。更にBDNFの反復投与後に経口糖負荷試験を実施したところ、BDNF投与群において耐糖能が改善していることが観察された。すなわち、BDNFは遺伝的に糖尿病を発症する動物モデルに加えて、後天的な要因により惹起されたレプチン抵抗性モデル動物に対しても効果を示すことが明らかとなった。

以上の結果はBDNFの糖尿病に関する新知見を提示したものであり、創薬に結びつく可能性を大いに占めており、学位論文にふさわしく、薬学博士として中川 勉を推薦するものである。