

Not all Al is GenAl; not all GenAl is LLMs

Case Studies of the Challenges in Using AI with Large Scale Scientific Computing

Mohamed Wahib

RIKEN Center for Computational Science, Japan

Work of Many Collaborators

		V V O I I V	iarry Conaboratoro
JP	RIKEN-CCS	Satoshi Matsuoka Kento Sato	SE KTH Artur Podobas
		Jens Domke	FR DDN Emmanuel Jeannot
		Jun Igarashi Aleksandr Drozd	BSC Jesus Labarta, Marc Clasca, Mario Acosta, Kai Keller
		Emil Vatai Lingqi Zhang	US/TR Nvidia/Koç U. Didem Unat, Ilyas Turimbetov
		Peng Chen Sara Moukir	FR Télécom SudParis François Trahay
	Hokkaido U.		US ANL A. Dubey, I. Cloet, X. Wu, J. O'Neal, Klaus
JP	TIORRAIGO O.	Masaharu Munetomo, Enzhi Zhang	US UC Berkeley Saathvik Selvan, Connor Chen
JP	Science Tokyo	Rio Yokota	US VirginiaTech Johann Rudi, Wuchun Feng
		Riichiro Hira Takayuki Nishiyo	US ORNL Xiao Wang, Issac Lyngaas
		Chen Zhuang Du Wu	US Emory U. Katherine Keegan
		Tengfei Wang Ivan Ivanov	US Intel Balazs Gerofi
JP	AIST	Liu Xin , Truong Thao Nguyen	HK HKBU Ameilie Zhou, Yuxin Wang
JP	Spring-8	Kentaro Uesugi, Takaki Hatsui	CN NUIST Xue Yu
JI ID	Kyoto U.	Seo Akira, Yosuke Higo	SG A*STAR Luo Tao

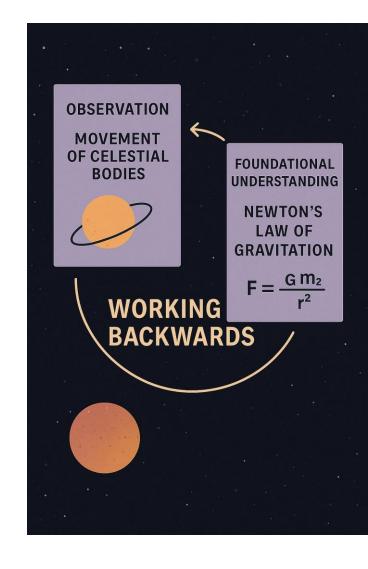
2

Why at all is Al Relevant to Science/Engineering

Astronomers observed regular, predictable motion of celestial bodies

What governs this motion?

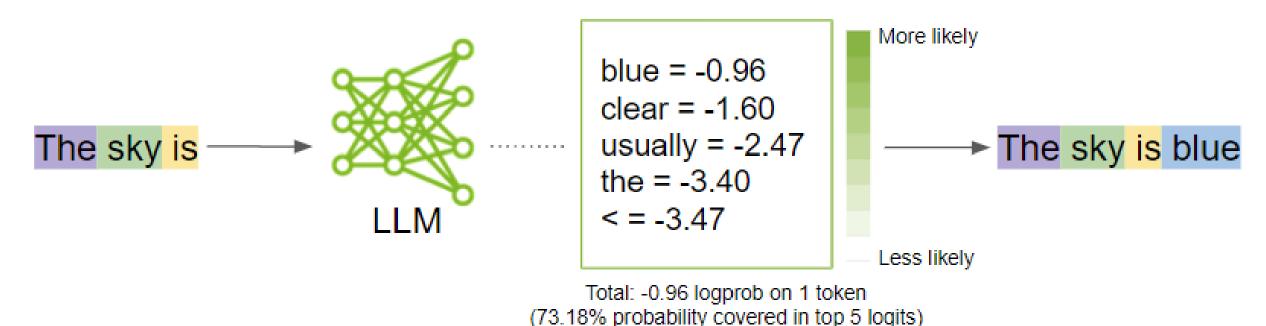
Newton worked backward from these observations and proposed: A **universal force** acts between all masses



Science is reverse engineering nature → (mostly) by observing patterns

Al (Machine Learning) is Good at Finding Patterns

When you use ChatGPT, you are asking the model to **predict from patterns** it learned



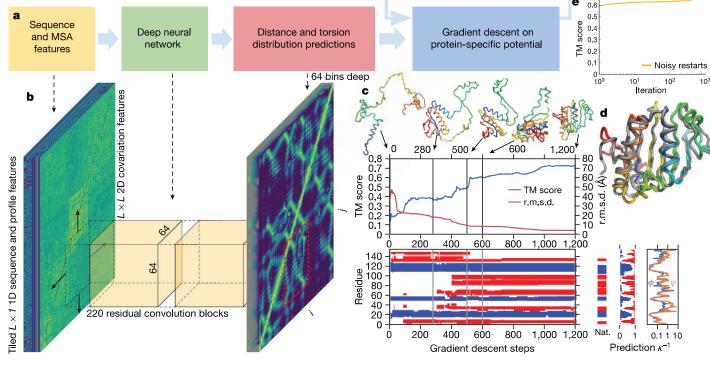
Al in Science: use Al pattern recognition capability to understand nature

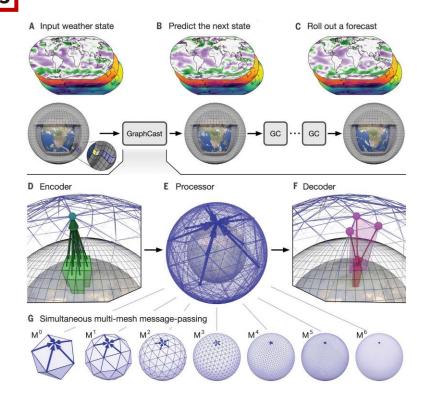
Breakthroughs in Al-based Science: Finding Patterns

nature

Improved protein structure prediction using potentials from deep learning

Learning skillful medium-range global weather forecasting

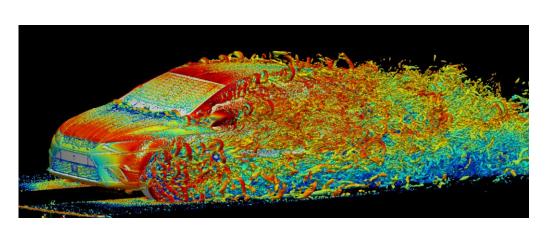




GraphCast

Al for Spatial and Spatio-temporal Data

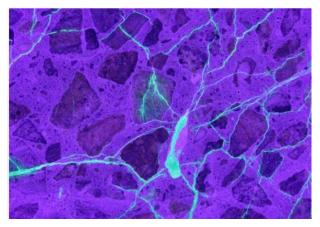
Complex Spatial-Temporal Data Is Common for Science & Engineering



Fluid dynamics

Climate/Weather Prediction

Satellite Remote Sensing



X-ray/electron microscopy

Industrial inspection

Synchrotron beamline

Multi-dimensional Images in Science & Engineering

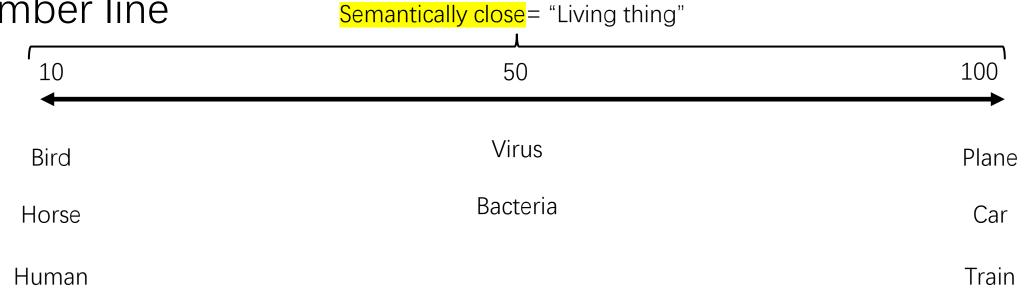
Type	Resolution	Tokens/Sample Patch = 162/163	Dataset Sizes	Dimensions (Channels)
Weather\Climate Simulations	100s ³ 10s channels (ERA5 dataset)	~ 300K	~10 PB	3 Spatial + 1 Temporal + (N Channels)
Satellite Images	1000s ³ 10s channels	~5M	~ 10s TB	2 Spatial + 1 Temporal + (N Channels)
Microscopic (Ex: Pathology)	$100\mathrm{K}^2$	~100Ks (4x4 patch)	~ 10s TBs	2 Spatial + (1 or N Channels)
Video	100s ² ~ Hours (24 f/s) (YouTube-8m)	~1M	~1 PB	2 Spatial + 1 Temporal + (N Channels)
X-Ray CT (Ex: SP-μCT)	~8-12K ³ >163 new beam	~1B	~100s TB	3 Spatial + (1 Channel)
MRI (Ex: dMRI)	~4K ³ (sub 5-micron)	~ 30M	~ 10s TB	3 Spatial + (N Channels)

What is a Transformer (LLMs)?

Self-attention TL;DR: Text and Embeddings

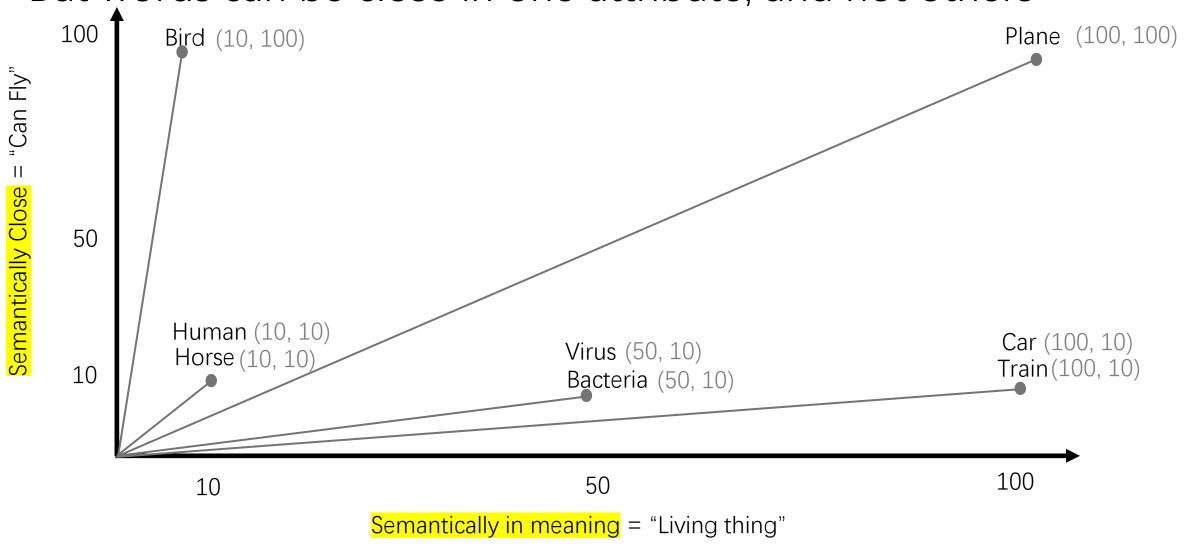
- Modeling language:
 - Find how words relate to and affect the meaning of other words

 Use a single number to represent each word, words semantically close in meaning are close to each other on the number line



Text and Embeddings

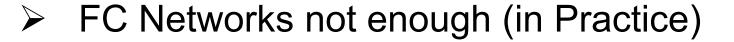
But words can be close in one attribute, and not others



ViT and Inductive Bias

Universal law of approximation

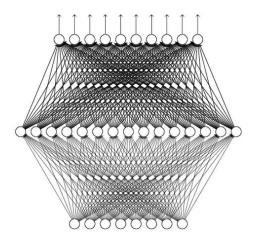
- Bound on approximation error
 - Generalization error
 - Optimizer error



Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

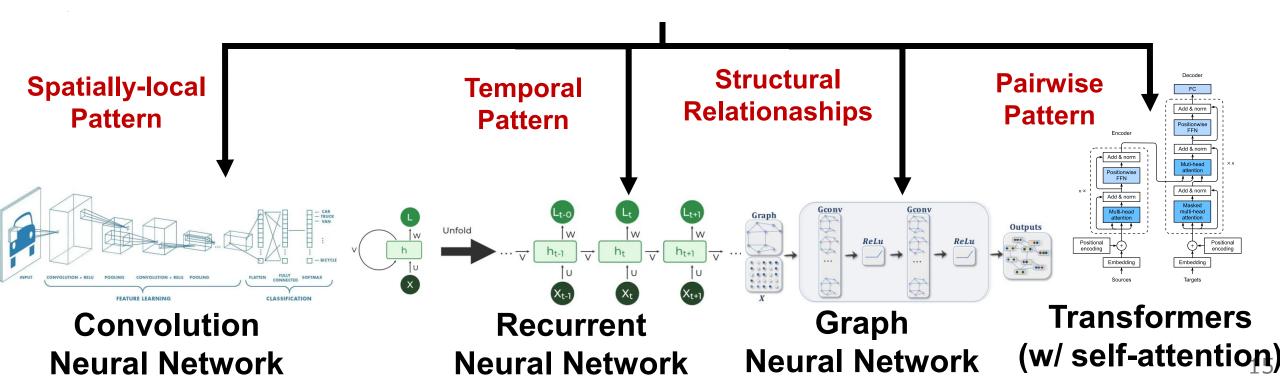
Can be realized by a fully connected network with hidden layer(s)



Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Al in Science: use ML pattern recognition capability to understand nature

- ➤ Neural Networks → sophisticated pattern recognition
 - > Add network elements to "work better" with the pattern in the data



ViT and Inductive Bias

- From the Inductive bias POV
 - ViT might not seem to make much sense
- Receptive field is entire image
 - Every piece of the image attends to all other pieces of the image

Positives

Model learns EVERYTHING -> can ingest massive datasets

Negatives

➤ Model learns EVERYTHING → expensive; finds irrelevant patterns

ViT Issues vs. Text Transformer Issues

- Transformer consume sequence of tokens
 - Fitting to the nature of text
- > Text tokens: atomic semantically distinct, rich in information,
 - Visual tokens: geometrically related and sparse in semantics
- Loss of spatial hierarchy information becomes more pronounced
 - When working with high-resolution or high-dimension images

ViT Challenges

- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- 4 Different parallelism in training (vs. text Transformer)
- Multi-modality

Two Main Principles on Solving Real-world Problems

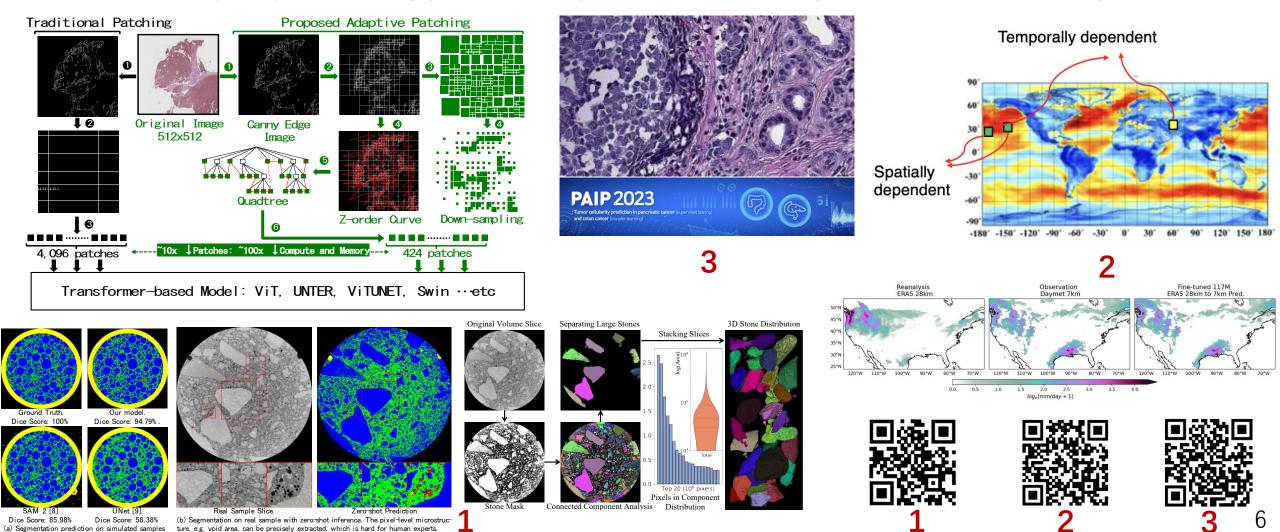
Start from Scientific Inquiry; Work Back to Solution

2 Al is a toolbox; always pick the right tool

Vision Transformers Use in Real-world Problems

Vision Transformers used in production, Examples:

a) microscopic pathology, b) X-ray CT road samples, c) weather prediction



ViT Challenges

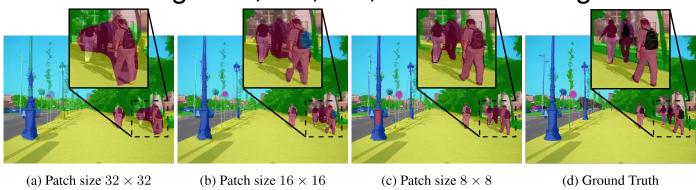
- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- Different parallelism in training (vs. text Transformer)
- 5 Multi-modality

LLMs for 3D Segmentation

- **➤ Using LLMs for Vision (ex: Vision Transformers)**
 - ➤ Because of self-attention, the receptive field is the entire image!
 - ➤ Split image to patches (ex: 16x16)
 - > Feed patches to LLMs

≻Segmentation

- ➤ Larger patches → model learns global meaningful segmentation; produces poor boundaries
- ➤ Smaller patches are qualitatively better
- \rightarrow 4x4 patches for 4K³ 3D image = 1,000,000,000 tokens/image

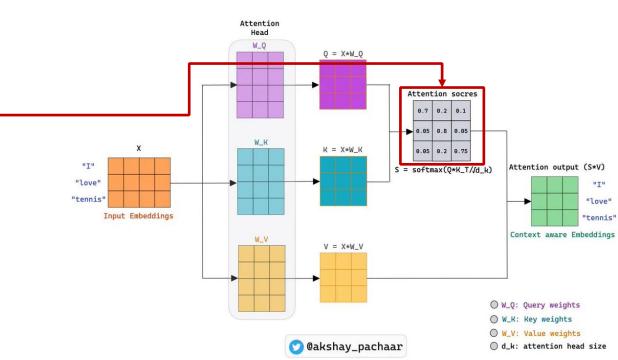


Impact of Model Patch Size on the Segmentation Maps*

Longer Sequence: a Challenge

- The longer the sequence, the more the **context** that can be extracted
 - Ex: feeding an LLM entire books, library of papers, RAG, or segmentation
 - \triangleright GPT-4-turbo \rightarrow 128,000 tokens GPT4-32k \rightarrow 32,768 tokens (1 Token = $\frac{3}{4}$ Word)

➤ Compute and memory cost ∝ sequence²



ANTHROP\C

Claude

API Solutions

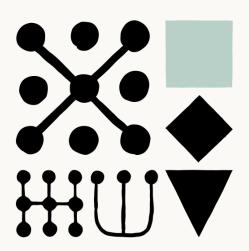
ns Research

Commitments

Learn News

Try Claude

Engineering at Anthropic



How we built our multiagent research system

Published Jun 13, 2025

Our Research feature uses multiple Claude agents to explore complex topics more effectively. We share the engineering challenges and the lessons we learned from building this system.

"Multi-agent architectures effectively scale token usage for tasks that exceed the limits of single agents."

Compatibility of Longer Sequence Approaches in Training

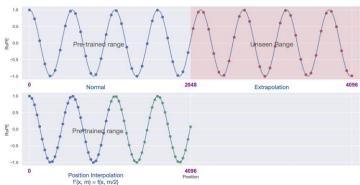
	Alternative for Attention	Hierarchal Training	Attention Approximatio n	Cache Blocking	Reduce Tokens	Sequence Parallelism
Alternative for Attention		?	X	?		?
Hierarchal Training	?					
Attention Approximatio n	X			?		X
Cache Blocking						
Reduce Tokens	V				<u> </u>	
Sequence Parallelism	•		X			

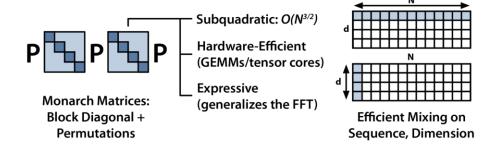
Alternative for Attention Hierarchal Training Attention Approximation Cache Blocking Sequence Parallelism Reduce Amount of Tokens

➤ Alternative Mechanism for Attention

Monarch: use convolution to compute Attention (FFT for convolution)

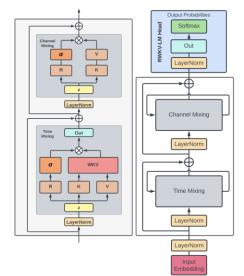
Positional Interpolation: downscale vs. extrapolating (Extend window size)

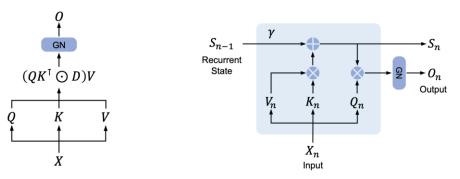




RetNet: a retention mechanism for attention modeling (parallel recurrency)

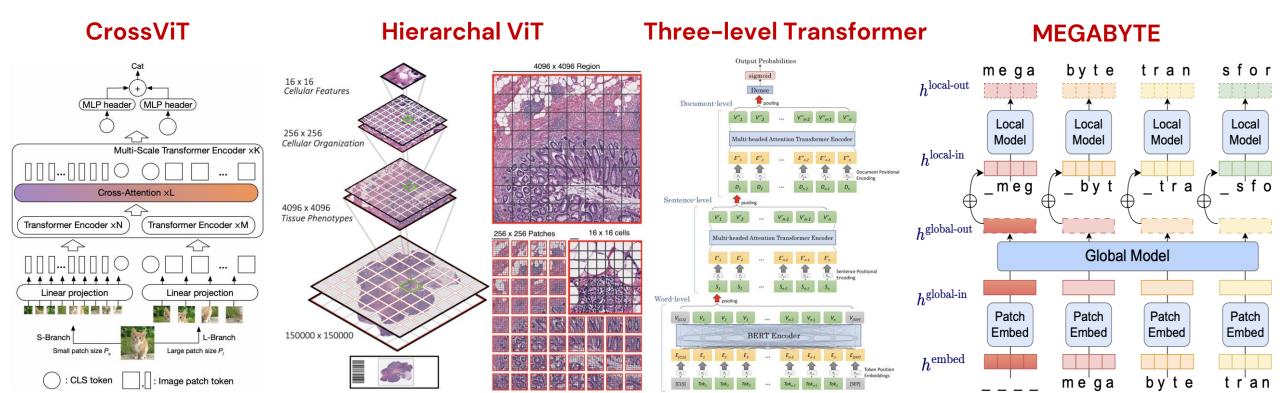
RWKV: Transformer in training; **RNN** in inference (Linear attention)





Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

- ➤ Hierarchal Training
 - > Train multiple transformers at different levels of abstraction
 - > The transformer at the lowest abstraction level trains on the shortest sequence segments.
 - ➤ The transformer at the next higher level uses the previous level outputs as additional input to train on longer segments.



Alternative for Attention
Hierarchal Training

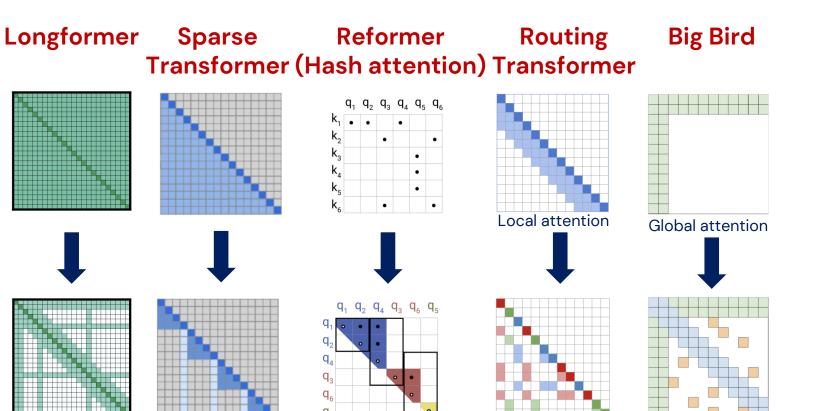
Attention Approximation

Cache Blocking
Sequence Parallelism

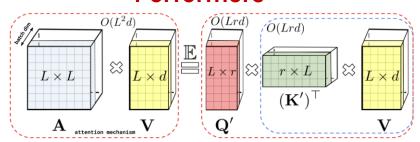
Reduce Amount of Tokens

➤ Attention Approximation

- > Approximate self-attention operation through sparse sampling, lox-rank approx., infrequent update ...
- ➤ Note: "sparse" when talking about LLMs now mean **sparse sequence**, not sparse model



Performers



Linear Transformers

$$A_l(x) = V' = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{D}}\right)V. \qquad \qquad V'_i = \frac{\sum_{j=1}^N \sin\left(Q_i, K_j\right)V_j}{\sum_{j=1}^N \sin\left(Q_i, K_j\right)}.$$

In-frequent Update

$$s_i = \operatorname{dot}(q, k_i), \qquad s_i' = e^{s_i}, \qquad \operatorname{attention}(q, k, v) = \frac{\sum_i v_i s_i'}{\sum_j s_j'}.$$

LazyFormer

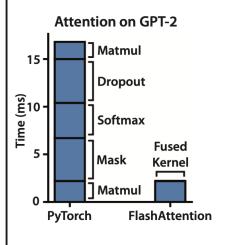
Remove dropout in self-attention. Wider Layers.

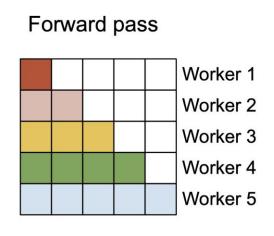
Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

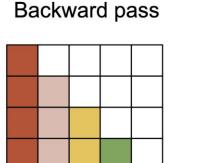
- ➤ Cache Blocking
 - ➤ No approximation
 - > Can support longer sequences by blocking the attention matrix in scratchpad memory
 - ➤ Aggregate amount of work stays the same → support longer sequence, but not faster

FlashAttention

Outer Loop $K^T: dxN$ Copy Block to SRAM $Q: N \times d$ V:NXd **SRAM:** 19 TB/s (20 MB) **GPU** HBM: 1.5 TB/s (40 GB) Compute Block **HBM** DRAM: 12.8 GB/s Main Memory (CPU DRAM) (>1 TB)**Memory Hierarchy with** Output to HBM **Bandwidth & Memory Size Inner Loop FlashAttention**







FlashAttention2

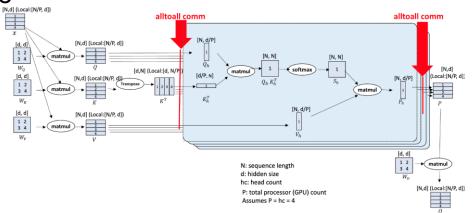
Alternative for Attention Hierarchal Training Attention Approximation Cache Blocking Sequence Parallelism Reduce Amount of Tokens

- Sequence/context Parallelism
 - Distributing long sequences among GPUs as short contiguous segments
 - Communication overhead due to token inter-dependence

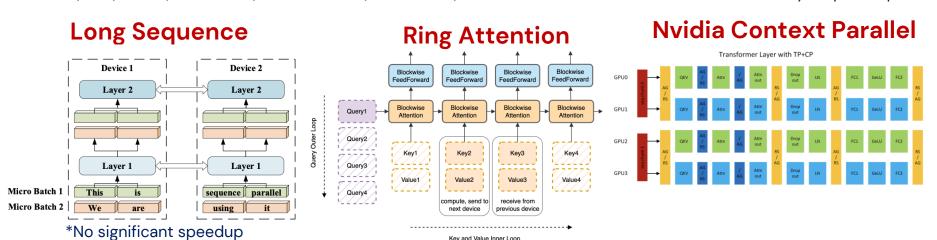
MS DeepSpeed-Ulysses

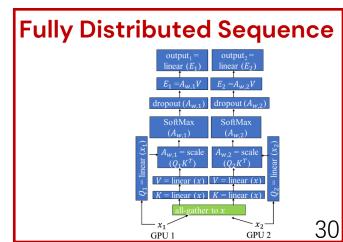


*Not really sequence parallelism; parallelizes Dropout and LayerNorm



*Not really sequence parallelism; full attention is still at each worker





Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

- ➤ Reduce Amount of Tokens
 - ➤ Current practice: divide input to tokens, feed all tokens to the model
 - > Feed the model less tokens: BEFORE tokens are ingested or DURING passing through the model

(Learned) Token Pruning

Layer 1 This is the best restaurant, and I will be returning for another meal.

15 tokens 🔻

Layer 4 This is the best restaurant, and I will be returning for another meal.

11 tokens 🔻

Layer 8 This is the best restaurant, and I will be returning for another meal.

4 tokens -

Layer 12 This is the best restaurant, and I will be returning for another meal.

2 tokens -

Classification

Positive Sentiment

Adaptive Patching (ViT)

Patch the images in a "smarter" way

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer

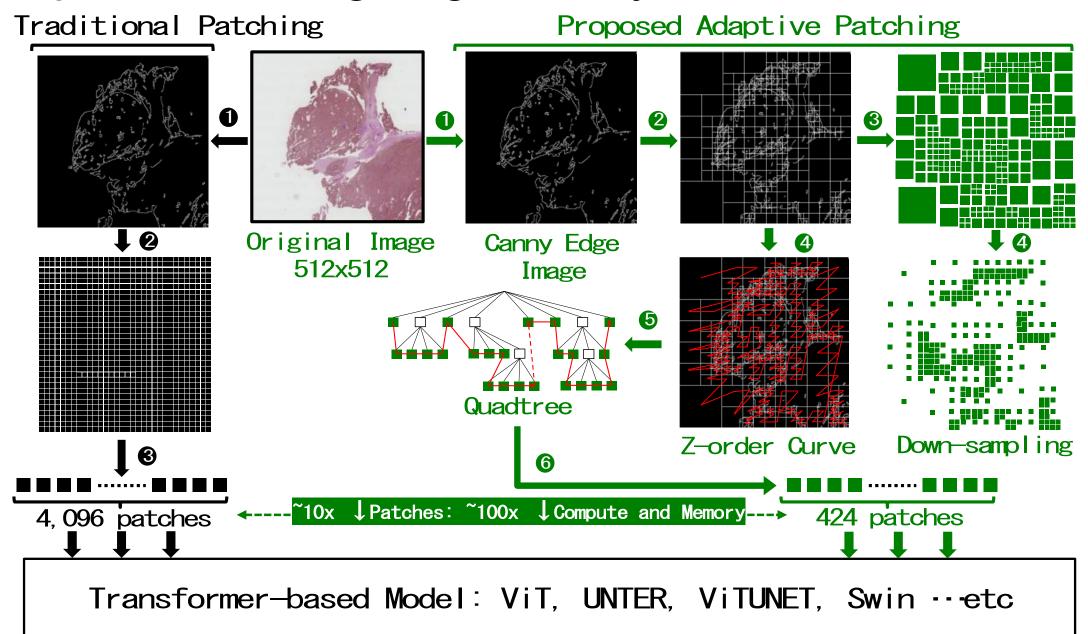
➤ Very high resolution (up to 100,000 x 100,000 pixels)

- ➤ Used in pathology
- ➤ Ex: PAIP dataset
 - > Pancreas
 - **➤ Diagnostic:** Perineural Invasion
- ➤ Segmentation with Vision Transformer (ViT)

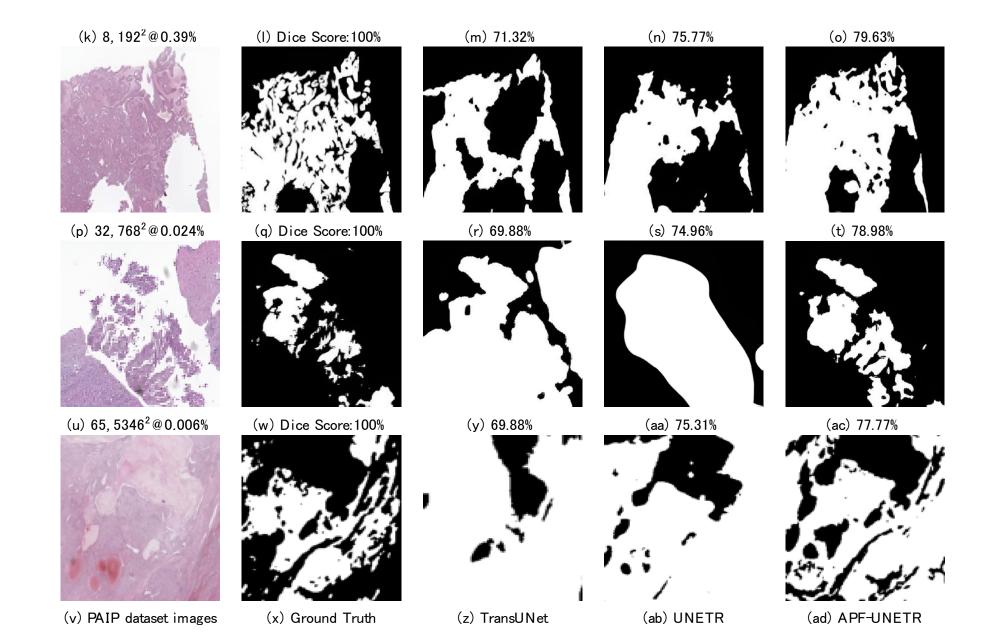
➤ Challenge:

PAIP 2023: Tumor cellularity prediction in pancreatic cancer and colon cancer (transfer learning)

Adaptive Patching: Ingest Only the Data that Matters



Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer



Results: Speedup

Ouadtree Dice Score Speedup Speedup Resolution **Model-Patch** Sec/Image **Sequence Length Depth** (%)(Sec/Image) (Time to Convergence) 512×512 APF-4 0.06495 1,024 77.88 $7.48 \times$ $12.71 \times$ 1 GPU **UNETR-4** 0.4863 16,384 77.31 $1,024 \times 1,024$ APF-8 1,024 0.14284 75.63 $7.6 \times$ $12.92 \times$ 8 GPUs **UNETR-8** 1.0863 16,384 75.72 $4,096 \times 4,096$ **APF-16** 0.32231 2,116 8 75.74 $5.77 \times$ $9.8 \times$ 128 GPUs UNETR-32 1.8613 16,384 75.77 $8,192 \times 8,192$ 1.1613 2,116 APF-16 9 76.13 $3.89 \times$ $2.29\times$ 2.6618 256 GPUs UNETR-64 16,384 75.27 $16,384 \times 16,384$ APF-32 1.7613 1.024 75.929 $2.9 \times$ $4.93\times$ 512 GPUs UNETR-128 5.1179 16,384 75.89 $32,768 \times 32,768$ APF-32 2.1567 2,116 10 75.32 $6.44\times$ $3.79\times$ **1024 GPUs** UNETR-256 8.1896 16,384 74.96 $65,536 \times 65,536$ APF-32 5.733 4,096 11 75.82 $2.3 \times$ $3.91 \times$ 2048 GPUs UNETR-512 13.218 16,384 75.31

Results: Quality

- ➤ Since we can reduce the sequence length
 - ➤ We could increase the patch size, get better results (for the same compute budget)

Resolution	Model	Patch	GPUs	Sec/Image/GPU	Depth	Sequence Length	Dice Score	Dice Improvement
		2	256	2.3314	12	10,609	79.56	5.70%
	APF	4	256	2.1314	11	8,464	78.31	
0.400 0.400	(+UNTER)	8	128	1.7867	10	4,096	77.61	
$8,192 \times 8,192$		16	64	1.1613	9	2,116	76.13	
	UNETR	64	256	2.6618	_	16,384	75.27	
	TransUNet	_	256	2.3678	_	-	70.89	
	U-Net	_	32	1.2858	_	=	63.21	
		2	512	4.8792	13	16,384	80.62	
	APF	4	256	3.1231	12	8,464	79.31	_
10 004 10 004	(+UNTER)	8	256	1.8574	11	4,096	78.84	
$16,384 \times 16,384$		16	128	1.6421	10	2,116	77.43	6.23%
	UNETR	128	512	5.1179	-	16,384	75.89	
	TransUNet	-	512	6.1296	-	-	70.46	
	U-Net	-	256	2.7825	-	-	62.97	
		4	1024	7.8916	13	16,384	78.98	
	APF	8	512	6.1792	12	8,464	78.31	
20 700 20 700	(+UNTER)	16	512	4.1685	11	4,096	77.61	
$32,768 \times 32,768$		32	256	2.1567	10	2,116	76.13	5.36%
	UNETR	256	1024	8.1896	-	16,384	74.96	
	TransUNet	-	1024	10.001	-	-	69.88	
	U-Net	_	512	4.2714	_	-	61.38	
		8	2048	12.697	13	16,384	77.77	
	APF	16	1024	8.793	12	8,464	76.11	
6E E26 V 6E E26	(+UNTER)	32	512	5.733	11	4,096	75.41	
$65,536 \times 65,536$		64	256	3.961	10	2,116	75.13	3.27%
	UNETR	512	2048	13.218	-	16,384	75.31	
	TransUNet	-	2048	14.3516	-	-	67.67	1
	U-Net	ı	1024	5.961	-	-	59.69	

Al for Cone-beam X-ray Computed Tomography

- >X-ray CT widely used
- ➤ Current Generation X-ray CT rely on cone-beam scanners
- ➤ Higher quality; high-resolution real-time distributed reconstruction is intractable
- ➤ Use ViT to do geometry correction to make the real-time reconstruction tractable
 - ➤ 4K³ in 16 seconds and 8K³ in a few minutes (on 1,024 GPUs)

Scans from Southampton University for Bio research

Scans from Southampton University for Bio research

Scans from Southampton University for Bio research

Scans from Southampton University for Bio research

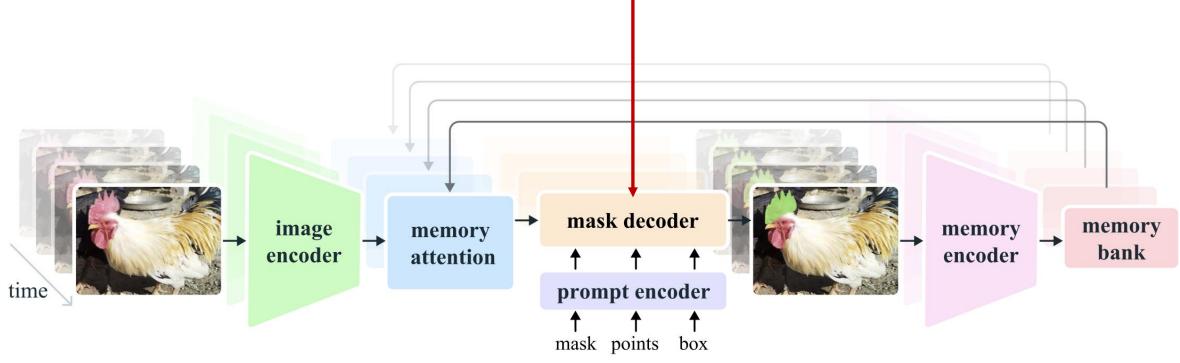
ViT Challenges

- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- Different parallelism in training (vs. text Transformer)
- 5 Multi-modality

SoTA Models Overwhelmed by High-resolution

➤In Segmentation

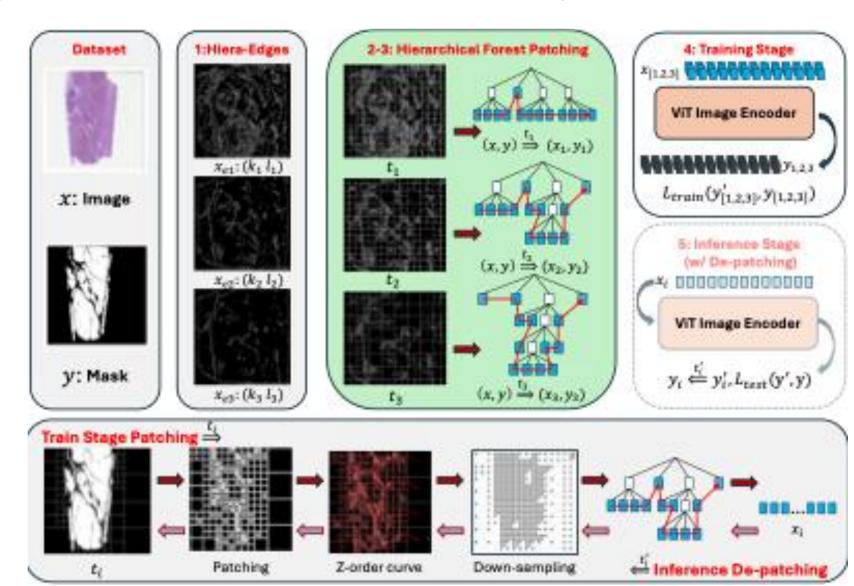
- We must map encoded features back to full-resolution pixel predictions
- > CNN mask decoder (too much memory required)



Symmetrical Hierarchical Forest with Pretrained ViT Encoder for High-Resolution Medical Segmentation

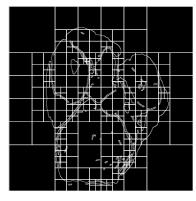
Remove Decoder

Apply a reverse depatching scheme the output embeddings of the transformer encoder, eliminating the need for convolution-based decoders

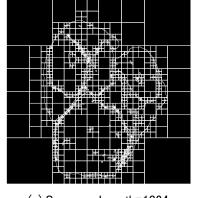


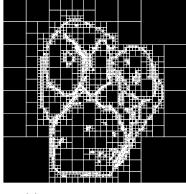
Symmetrical Hierarchical Forest with Pretrained ViT Encoder for High-Resolution Medical Segmentation

Resolution	Model	Patch	GPUs	Sec/Image/GPU	Depth	Sequence Length	Dice Score	Dice Improvement
512 × 512	SAP+SAM	8	1	0.0438	6	512	75.31	+0.14
	SAM	16	1	0.1983	-	1,024	61.39	
	AP+UNTER	8	1	0.0581	6	576	75.17	
	UNETR	16	1	0.1477	-	1,024	74.88	
	TransUNet	-	1	0.1783	-	-	73.32	
	UNet	-	1	0.0438	-	-	70.32	
$1,024 \times 1,024$	SAP+SAM	2	1	0.0991	9	1,024	78.67	+0.25
	SAM	8	8	0.3826	-	16,384	66.56	
	AP+UNTER	2	8	0.2314	9	1,024	78.42	
	UNETR	8	32	1.0863	-	16,384	75.72	
	TransUNet	-	8	1.3247	-	-	72.38	
	UNet	-	1	0.0981	-	-	68.92	
$4,096 \times 4,096$	SAP+SAM	2	8	0.3766	11	4,096	78.67	+0.14
	SAM	32	64	1.6183	-	16,384	71.05	
	AP+UNTER	2	128	0.6938	11	4,096	79.63	
	UNETR	32	128	1.8613	-	16,384	75.77	
	TransUNet	-	128	2.1637	-	-	71.32	
	UNet	-	16	0.3712	-	-	64.11	
$8,192 \times 8,192$	SAP+SAM	2	16	1.5327	12	8192	79.68	+0.12
	SAM	64	128	2.5168	-	16,384	67.31	
	AP+UNTER	2	256	2.3314	12	10,609	79.56	
	UNETR	64	256	2.6618	-	16,384	75.27	
	TransUNet	-	256	2.3678	-	-	70.89	
	UNet	-	32	1.2858	-	-	63.21	
$16,384 \times 16,384$	SAP+SAM	2	32	3.2741	13	16,384	80.98	+0.36
	SAM	128	256	5.6714	-	16,384	67.63	
	AP+UNTER	2	512	4.8792	13	16,384	80.62	
	UNETR	128	512	5.1179	-	16,384	75.89	
	TransUNet	-	512	6.1296	-	-	70.46	
	UNet	-	256	2.7825	-	-	62.97	
$32,768 \times 32,768$	SAP+SAM	4	64	3.4631	13	16,384	81.43	+2.45
	SAM	256	512	9.1213	-	16,384	62.34	
	AP+UNTER	4	1024	7.8916	13	16,384	78.98	
	UNETR	256	1024	8.1896	-	16,384	74.96	
	TransUNet	-	1024	10.001	-	-	69.88	
	UNet	-	512	4.2714	-	-	61.38	
$65,536 \times 65,536$	SAP+SAM	8	256	3.6112	13	16,384	82.96	+5.19
	SAM	1024	1024	12.983	-	16,384	61.68	
	AP+UNTER	8	2048	12.697	13	16,384	77.77	
	UNETR	1024	2048	13.218	-	16,384	75.31	
	TransUNet	-	2048	14.352	-	-	67.67	
	UNet	-	1024	5.961	-	-	59.69	



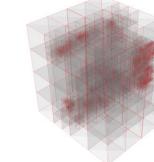
(f) Sequence Length=260



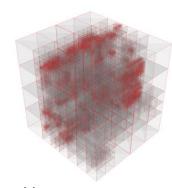




(c) Sequence Length=1024 (d) Sequence Length=4096







(h) Sequence Length=4096

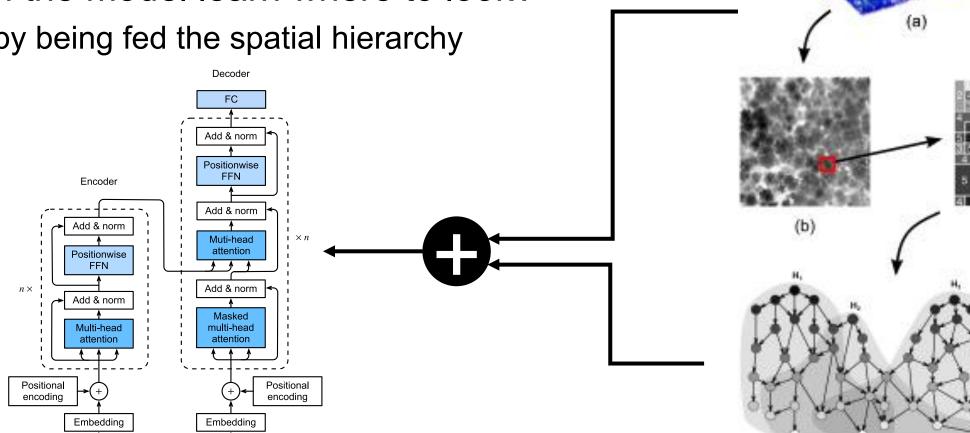
Can ViT Learn Where to Look?

HUMANS tell the model where to look

Targets

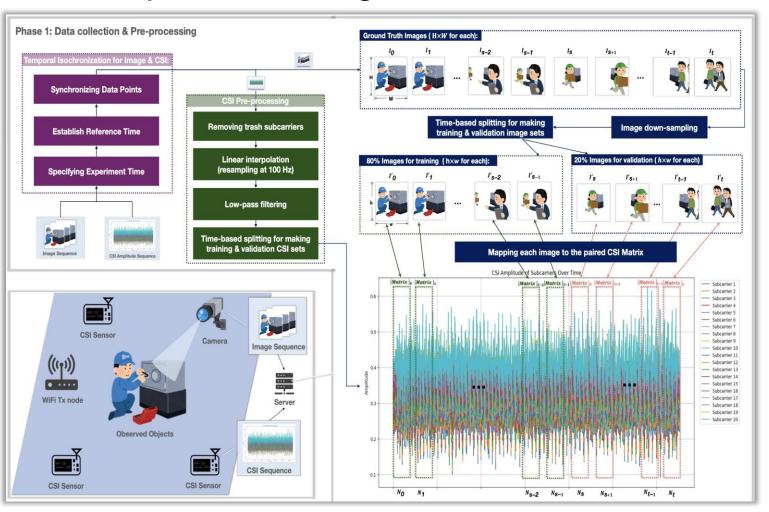
- Can the model learn where to look?
 - by being fed the spatial hierarchy

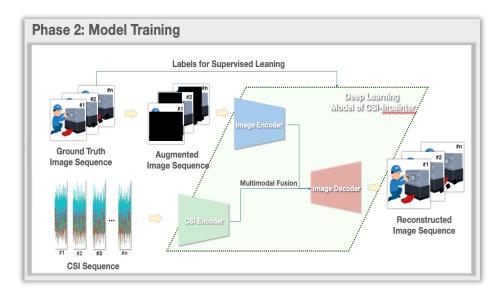
Sources

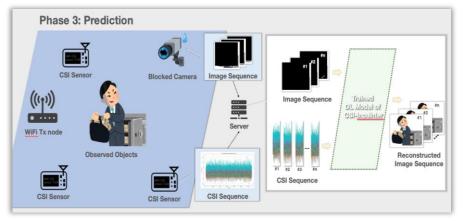


Visual Scene Recovery from Wi-Fi CSI ≤ SCIENCE TOKYO

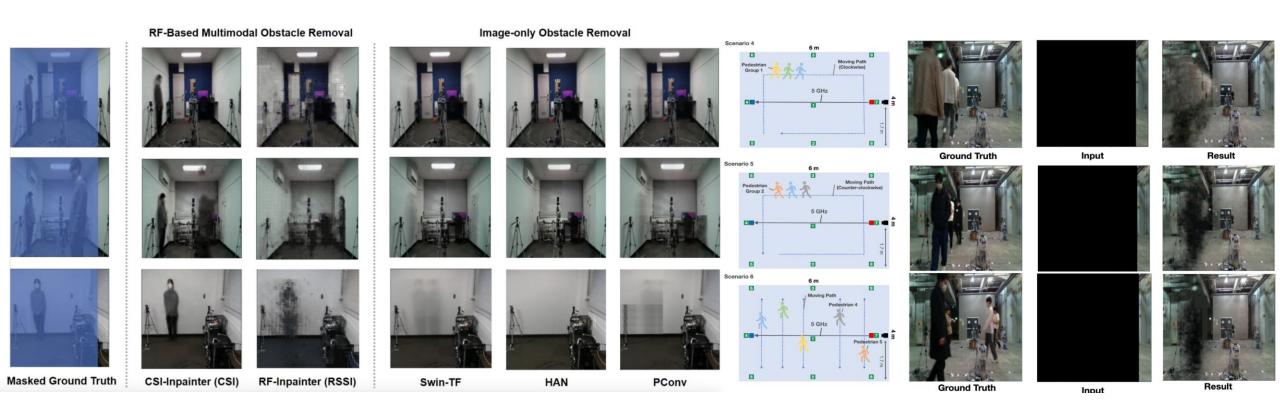
➤ CSI-Inpainter: CSI-guided obstacle removal







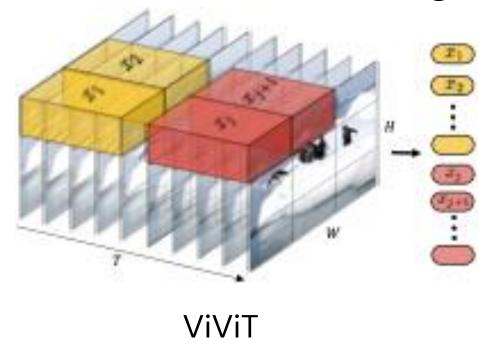
Visual Scene Recovery from Wi-Fi CSI

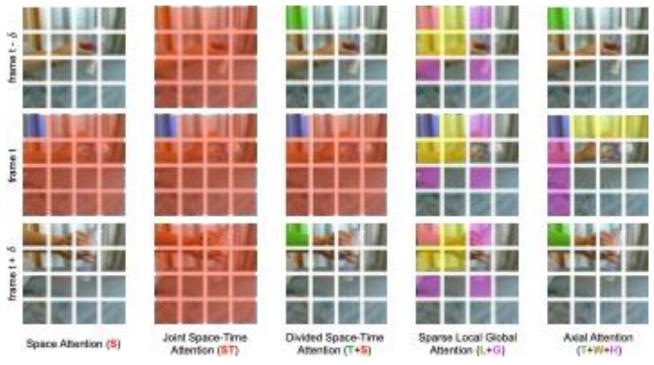


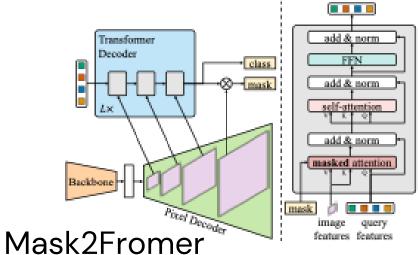
ViT Challenges

- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- Different parallelism in training (vs. text Transformer)
- 5 Multi-modality

Tokenizing Spatio-temporal Data is Tricky



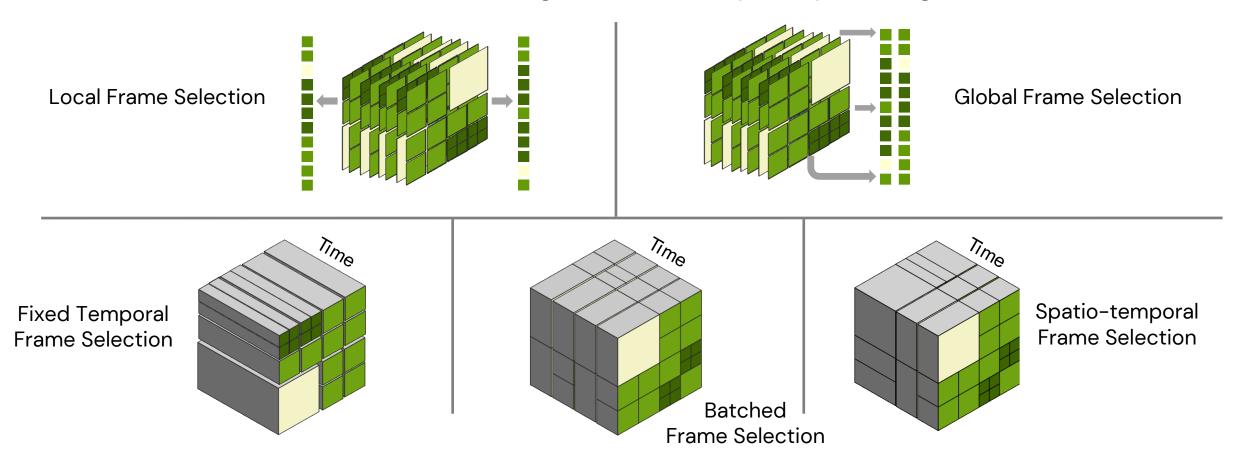




TimesFormer

How to Tokenize Spatio-temporal Data

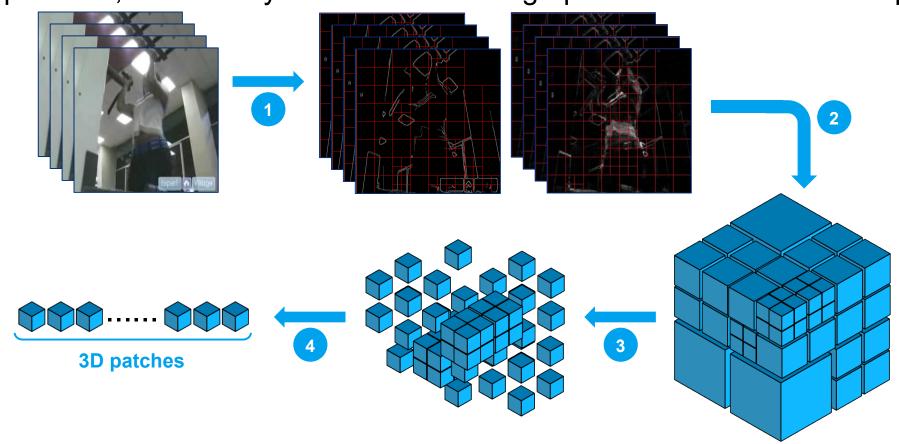
➤ Different tokenization schemes aligned with adaptive pathcing



We observe how Local and Global Frame Selection operate on a frame-by-frame basis to form quadtrees, while the other three schemes work across three dimensions. Among these three, Batch and Temporal-Spatial Frame Selection divide the time dimension, with the former using even divisions and the latter using uneven divisions.

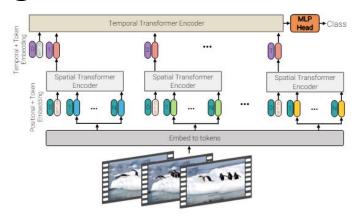
Adaptive Patching for Videos

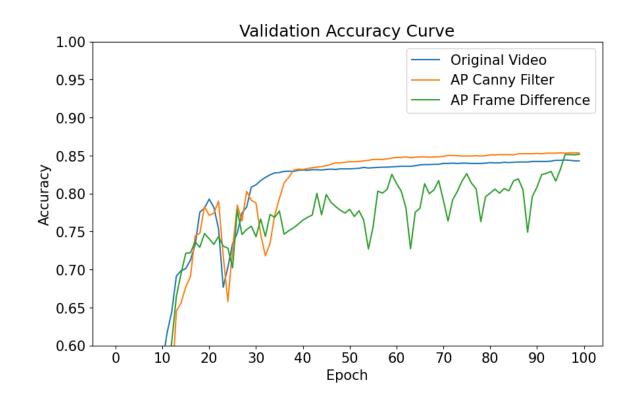
- ➤ For videos we adaptively patch temporally
 - >merging spatial and temporal adaptiveness?
 - customize the adaptive scheme based on the nature of the input dataset? AP as a means for compression, followed by a scheme to arrange patches to recreate the input video?

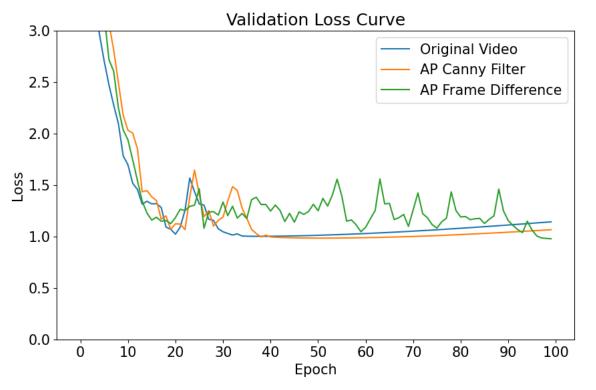


Application in Video Action Recognition

- > We use the Video Vision Transformer (ViViT) model for this task, containing attention in the spatial and temporal dimensions
- ➤ AP able to achieve comparable metrics with up to 4x memory reduction while maintaining the same number of patches

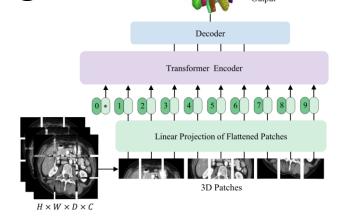


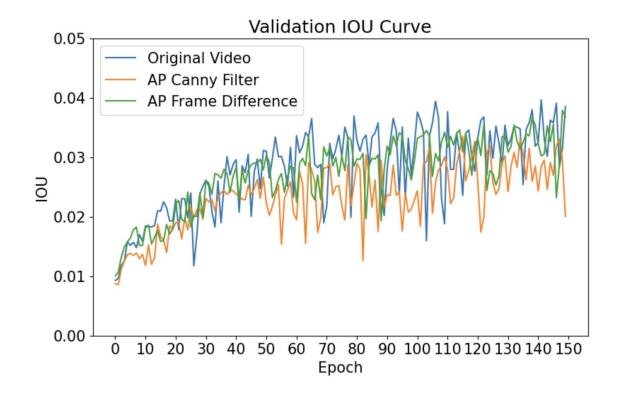


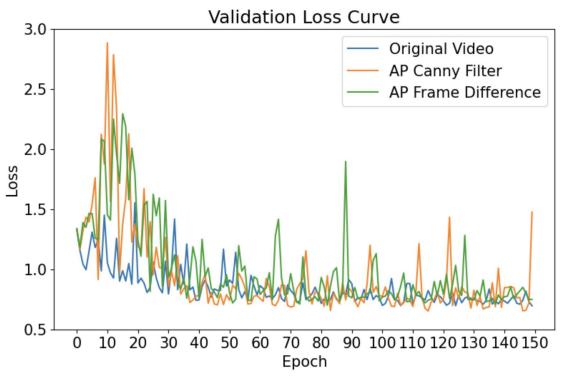


Application in Video Action Recognition

- ➤ We use the **UNEt TRansformers (UNETR)** model for this task, combining a transformer encoder with a convolutional decoder
- AP able to achieve comparable metrics with up to 8x memory reduction while maintaining the same number of patches







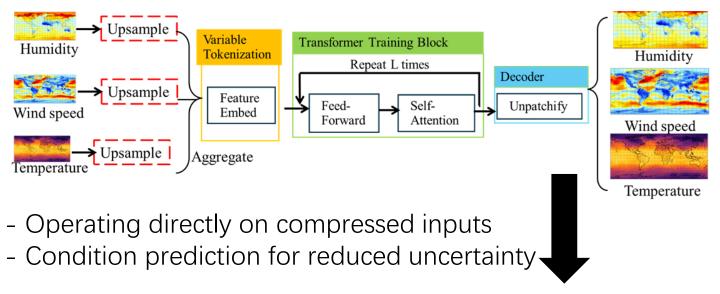
ViT Challenges

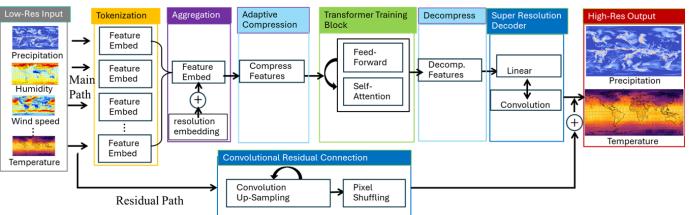
- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- Different parallelism in training (vs. text Transformer)
- 5 Multi-modality

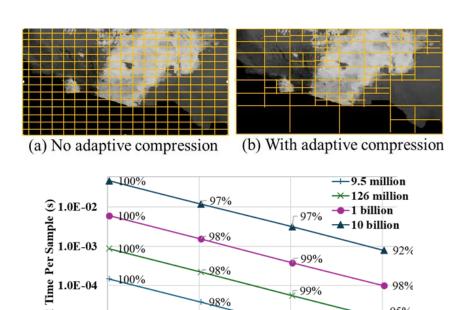
ORBIT-2: Scaling Exascale Vision Foundation Models for Weather and Climate Downscaling

93%

32000





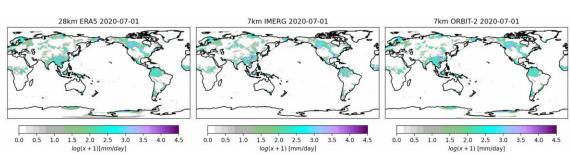


Number of GPUs

(b) Strong Scaling Efficiencies Across Models and GPUs

1.0E-05

7 1.0E-06

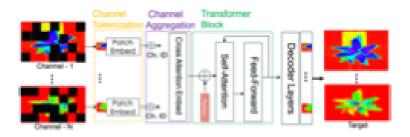


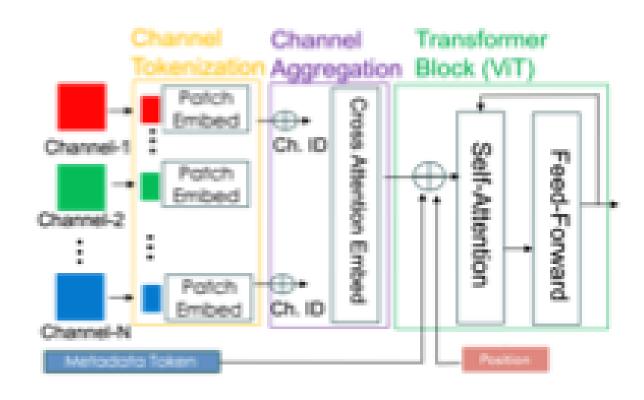
* Wang et al. To appear SC'25 (Gordon Bell Finalist)

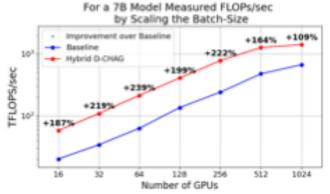
Distributed Cross-Channel Hierarchical Aggregation for Foundation Models

Distributed Tokenization

For high number of channels: distribute tokenization and implement a hierarchical strategy for channel aggregation.



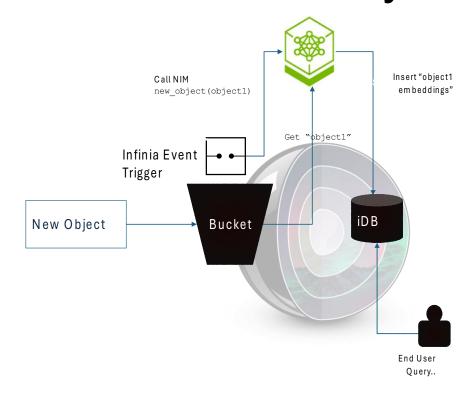


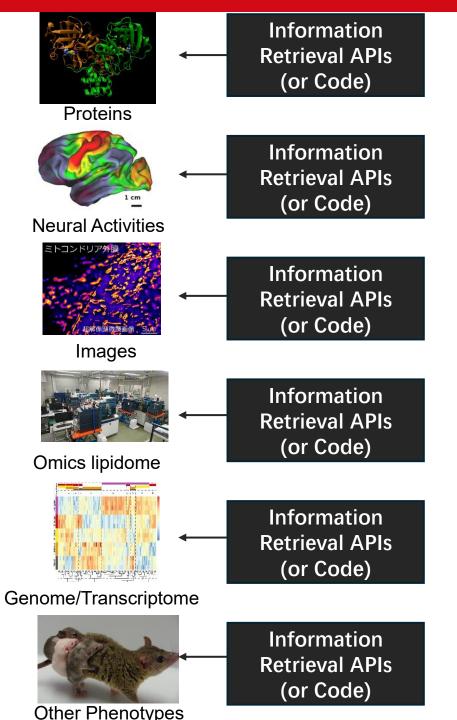


ViT Challenges

- 1 Long sequence (when ingesting all image elements at high res)
- 2 Shifting bottleneck (elements outside the Transformer encoder)
- 3 Tokenization (managing temporal dimension)
- Different parallelism in training (vs. text Transformer)
- 5 Multi-modality

Multi-agent Approach for Multi-modality



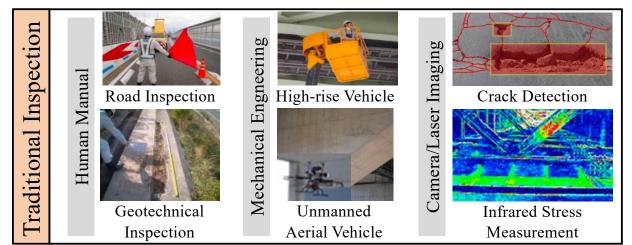


Real-world Problem Covering Almost all the Challenges Presented so Far

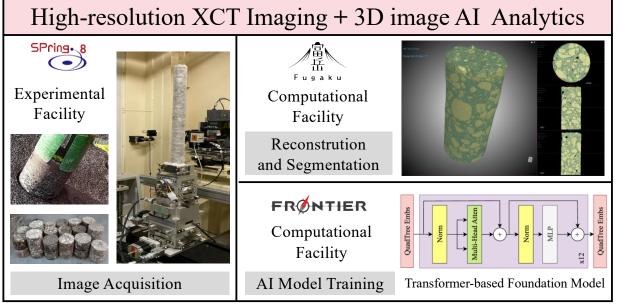
Paradigm Shift in Infrastructure Inspection Technology

High performance Imaging + AI + analytics

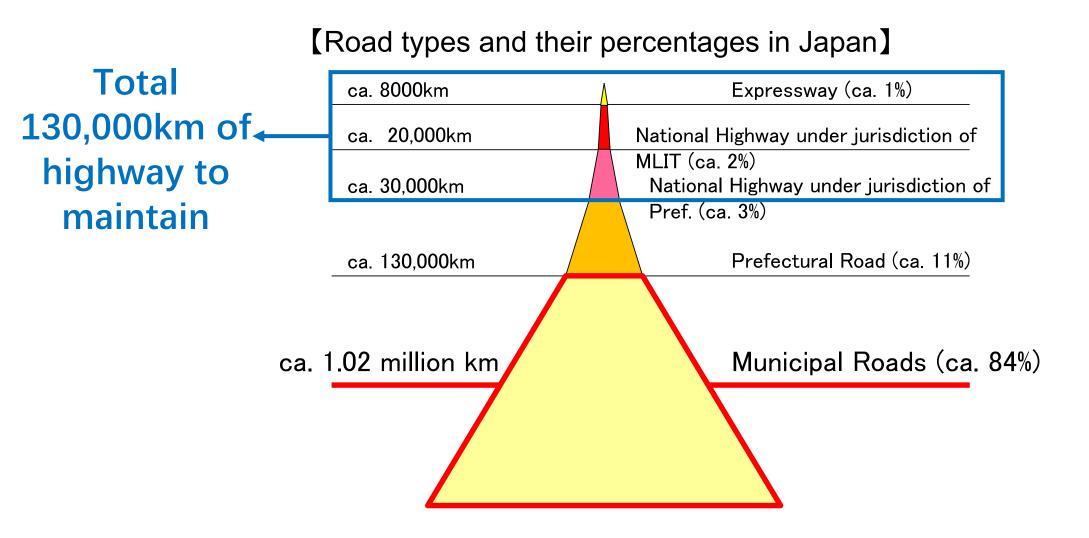
- Replace traditional engineering
- Full fusion of imaging and AI



Infrastructure Inspection Paradigm Shift



Total Road Length in Japan is ca. 1.21 Million KMs

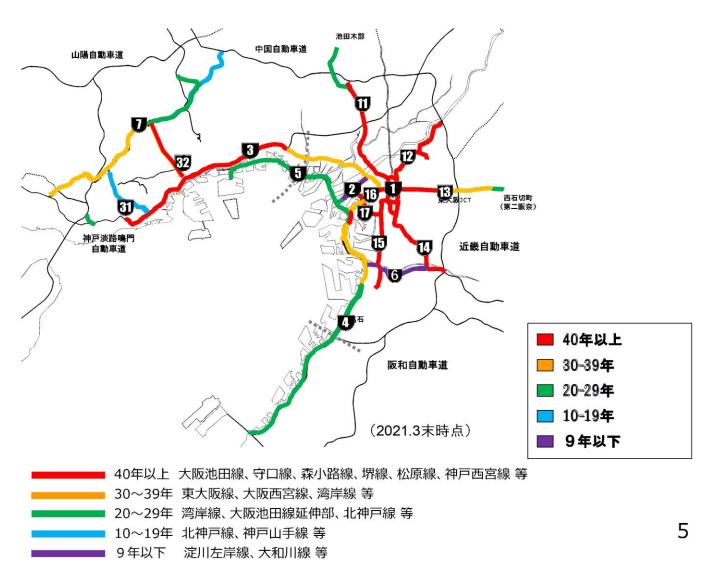


Highway Network West Japan (Osaka, Kyoto, Kobe)

1号環状線 四ツ橋付近 1964年6月28日、土佐堀~湊町間が開通

大和川第三トンネル (6号大和川線:供用中)

淀川左岸線(2期)建設中



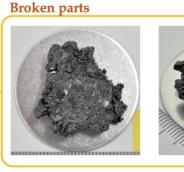
^{*} Source: Sakai @Hanshin Highway

How to Inspect Roads for Maintenance?

Mechanical inspection

• Time: 10s of years

Cost: \$ Billions



By EN12697-24 ANNEX-E

Visible light (above)

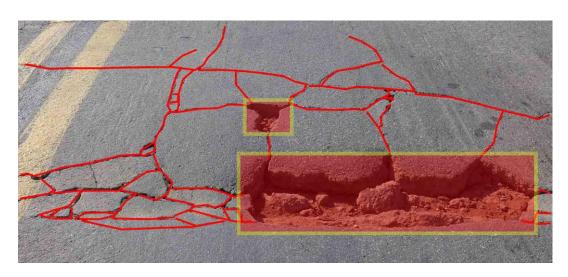
Fatigue test: Accelerated Crack Simulation

Visible light (right diagonal)

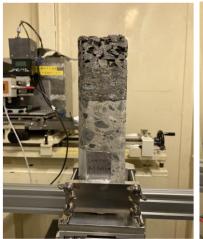
Camera/laser Imaging technology

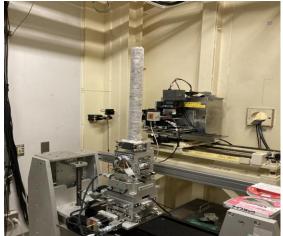
Good for fast screening of visible surface cracks, depressions etc

Not a reliable technology for understanding sub-surface conditions



Mechanical Inspection





"Actual-scale test track" by Taisei-Rotech

Vehicles Extracting 100s Samples per Day

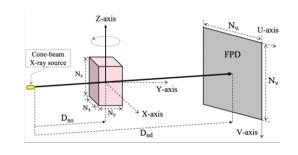
Core samples extraction machines mounted on vehicles

Collecting Samples

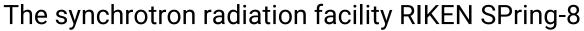
Extract cylindrical samples from core of asphalt layers

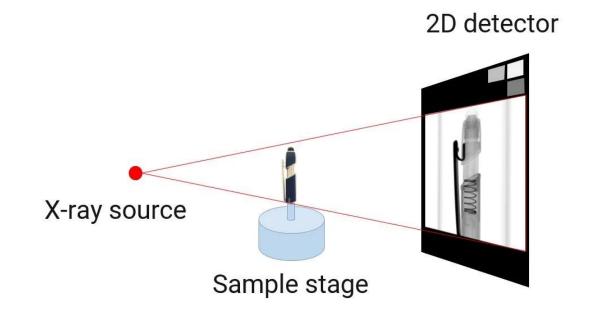
^{*} Example: if one sample every 10KM, then 130,000 / 10 = **13,000** samples

Scan Samples with X-ray



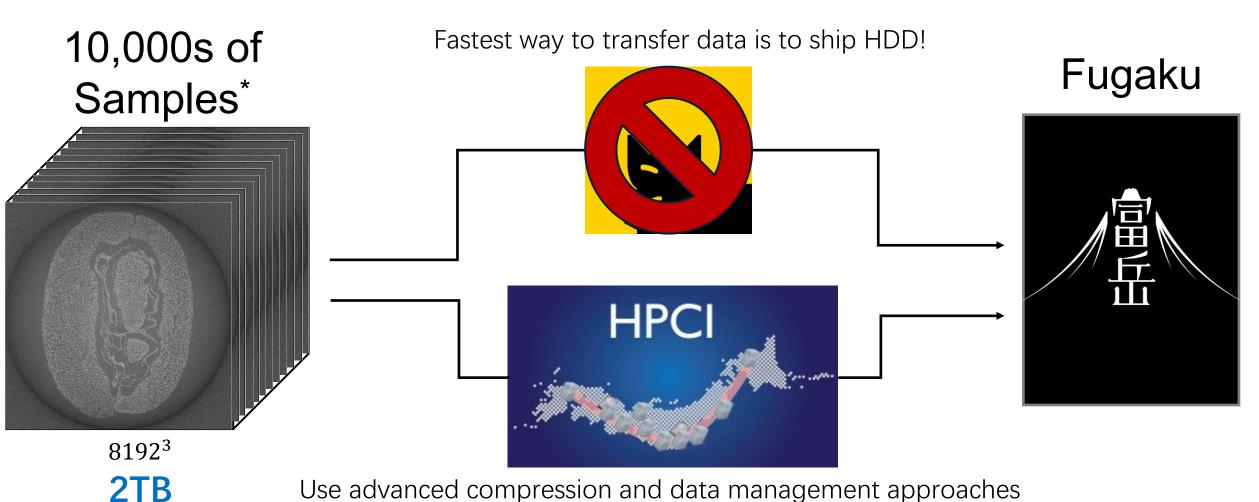
Scan (2D projections) at RIKEN Spring-8 Synchrotron





Move Data to RIKEN-CCS Fugaku

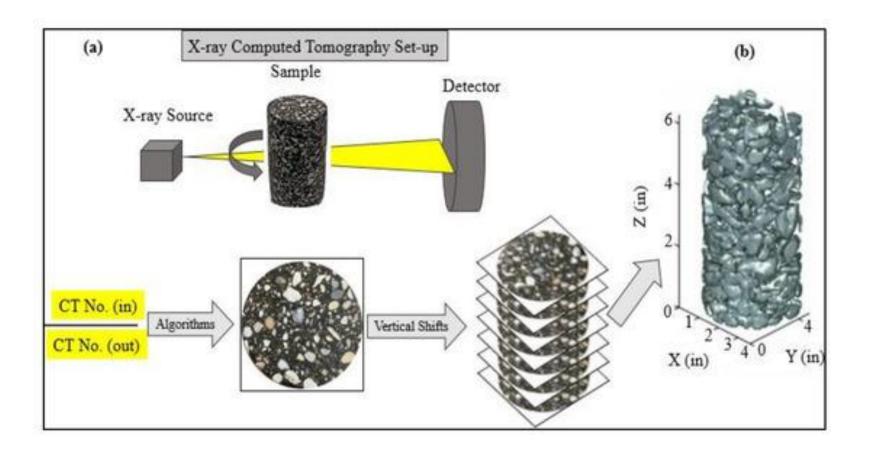
Move projections data to R-CCS (Fugaku)



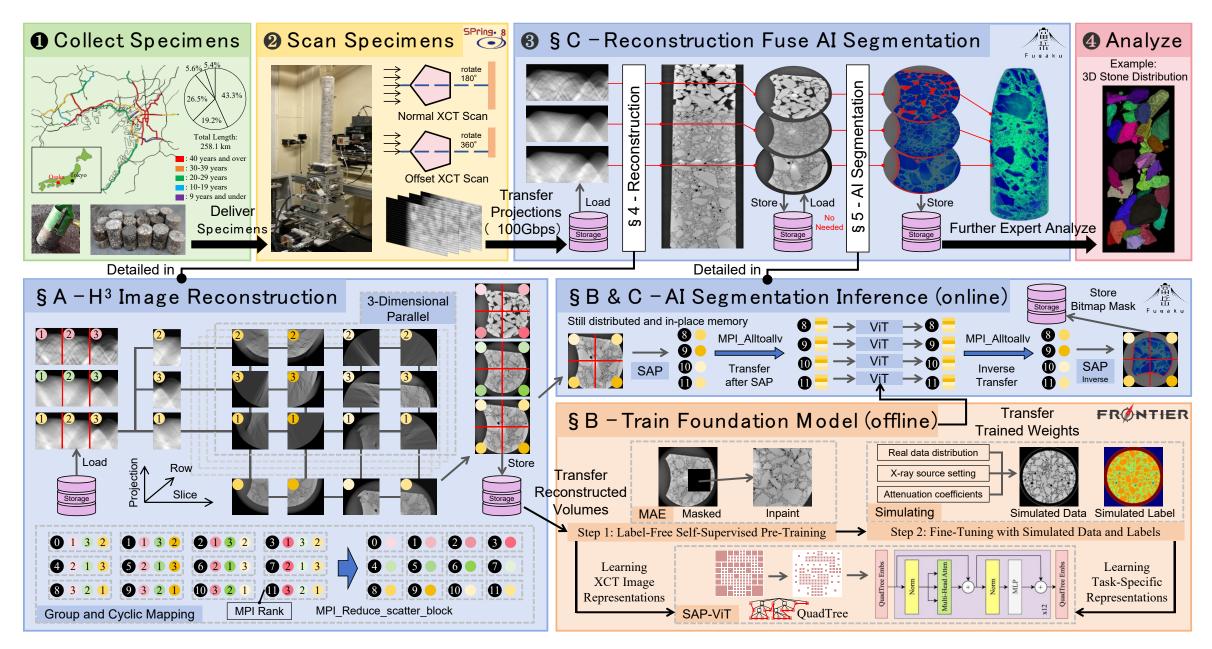
* ~ 2,000x amount of data used to train ChatGPT: Petabytes

High Resolution 3D Image Reconstruction

• High-performance high-resolution X-ray CT image reconstruction



Paradigm Shift in Infrastructure Inspection Technology



H³: High-throughput, High-perf., High-resolution CT

 H^3

End-to-end pipeline to reconstruct 10s of 16K resolution 3D images in one go (full-system scale)

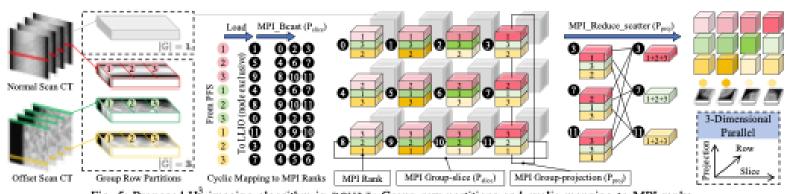
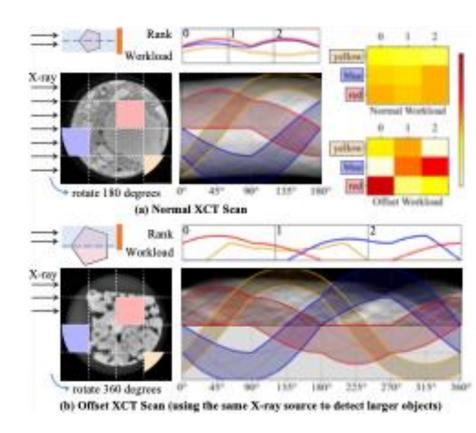


Fig. 5: Proposed H3 imaging algorithm in ROVAI: Group row partitions and cyclic mapping to MPI ranks.



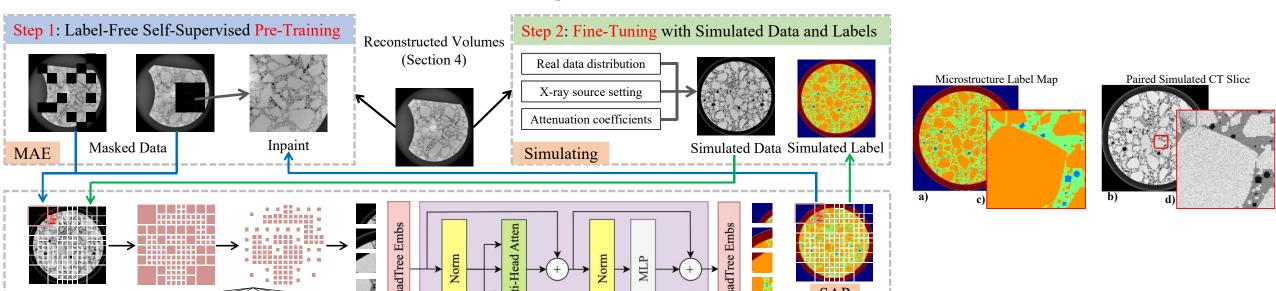
End-to-end Image Reconstruction

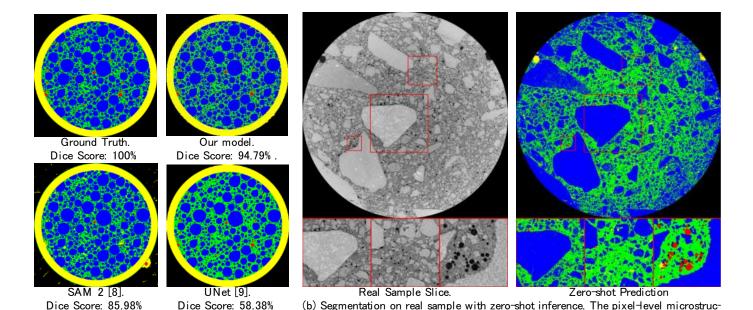
Cores were collected from road surfaces used for 20 to 30 years on the Hanshin Expressway.

High-resolution 4,192³ Asphalt Core generated on Fugaku in 12 seconds (12,288 nodes: ~7% Fugaku)

ViT Model with SAP

Training a Foundation Model





Several Challenges

Sequence length, tokenization, shifting bottleneck, and **NO LABELED DATA**

With QuadTree

Results Performance

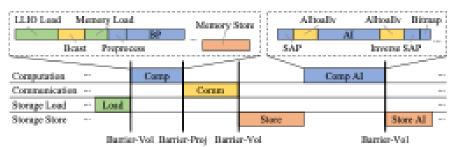
Original Volume Slice Separating Large Stones 3D Stone Distribution

Analytics

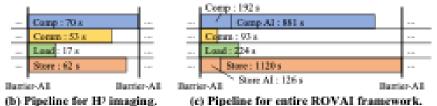
Stacking Slices 2.5 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Original v	olume since	Separating Large Stones			3D Stone Distribution
2.0 1.5 1.0 1.0 Top 20 (10 ⁶ pixels) Pixels in Component					Stacking Slices	>
2.0 1.5 1.0 1.0 Top 20 (10 ⁶ pixels) Pixels in Component				2.5	og(Area)	25
1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0				2.0		
O.5 Top 20 (10 ⁶ pixels) Pixels in Component		\	^	1.5	10°	
0.5 Top 20 (10 ⁶ pixels) Pixels in Component				1.0		
Top 20 (10° pixels) Pixels in Component			→ 1	0.5	Total	
					Top 20 (10 ⁶ pixels	nt.
	Stone	e Mask C	Connected Component Anal			

Road Inspection Analysis Items	T	XCT	XCT+AI
Detect surface degradation		_	√
Visualize sub-surface conditions		\	$\overline{}$
Measure road shear strain angle		$\overline{}$	$\overline{}$
Measure density of concrete and aggregate			$\overline{}$
Measure the distribution of voids			$\overline{}$
Measure the state of material around voids			$\overline{}$
Measure volume ratio of aggregate, stone, etc.			

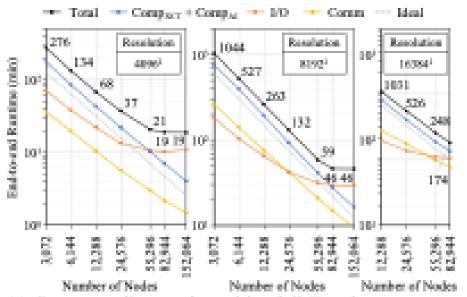
Datset	M odel	Patch Size	GPU (hours)	Epochs	Dice (%)
700 unique valumes	U-Net [9]	N/A	1,280	500	58.38
780 unique volumes w/simulated masks	Swin UNETR [10]	256 ²	5,120	1,000	63.74
(8,192 →8,192 →(50 <i>←</i> -120))	SAM 2[8]	128 ²	5,120	1,000	85.98
(8,182 %6,182 %(88 129))	Our Model	2 ²	5,120	1,000	94.79



(a) Step-by-step workflow of the ROVAI framework for group row partitions.



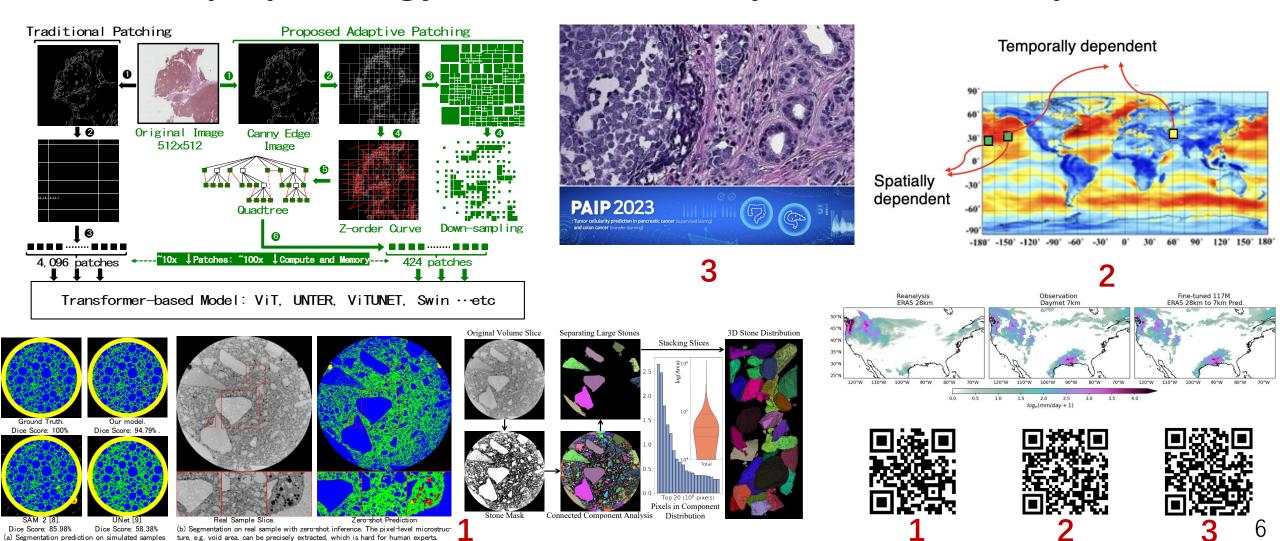
(c) Pipeline for entire ROVAI framework.



(a) Strong scaling evaluated by full Fugaku; ROVAI reconstructing 46 specimens into various resolution.

Al Can Provide Real Value to Science (High Performance Computing and Data management is a challenge)

microscopic pathology, Infrastructure Inspection, weather prediction



Thank you for listenting!

