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Why at all is AI Relevant to Science/Engineering

3
Science is reverse engineering nature → (mostly) by observing patterns

Astronomers observed regular, 
predictable motion of celestial bodies

What governs this motion?

Newton worked backward from these observations and 
proposed: A universal force acts between all masses



AI (Machine Learning) is Good at Finding Patterns
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AI in Science: use AI pattern recognition capability to understand nature 

When you use ChatGPT, you are asking the 
model to predict from patterns it learned
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Breakthroughs in AI-based Science: Finding Patterns 

AlphaFold GraphCast



6

AI  for Spatial and Spatio-temporal Data
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Complex Spatial-Temporal Data Is Common for
Science & Engineering

Fluid dynamics Satellite Remote SensingClimate/Weather Prediction

X-ray/electron microscopy Industrial inspection
Synchrotron beamline
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Multi-dimensional Images in Science & Engineering
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What is a Transformer (LLMs)?
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Self-attention TL;DR: Text and Embeddings

Bird

Horse

Human

Plane

Car

Train

• Modeling language: 
• Find how words relate to and affect the meaning of other words

• Use a single number to represent each word, words 
semantically close in meaning are close to each other on the 
number line

Virus

Bacteria

10 50 100

Semantically close= “Living thing”



Text and Embeddings
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• But words can be close in one attribute, and not others
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ViT and Inductive Bias

➢ Universal law of approximation

➢ Bound on approximation error

➢ Generalization error

➢ Optimizer error

➢ FC Networks not enough (in Practice)

Reference for the reason: 
http://neuralnetworksandde
eplearning.com/chap4.html

Any continuous function f

M: RRf N →

Can be realized by a fully 
connected network with 
hidden layer(s)
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AI in Science: use ML pattern recognition 
capability to understand nature 

➢ Neural Networks  → sophisticated pattern recognition

➢ Add network elements to “work better” with the pattern in the data

➢

Convolution

Neural Network

Spatially-local 

Pattern

Recurrent

Neural Network

Temporal 

Pattern

Pairwise 

Pattern

Structural 

Relationaships

Graph

Neural Network

Transformers

(w/ self-attention)
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ViT and Inductive Bias

➢ From the Inductive bias POV

➢ ViT might not seem to make much sense

➢ Receptive field is entire image

➢ Every piece of the image attends to all other pieces of the image

➢ Positives

➢ Model learns EVERYTHING → can ingest massive datasets

➢ Negatives

➢ Model learns EVERYTHING → expensive; finds irrelevant patterns

➢
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ViT Issues vs. Text Transformer Issues

➢ Transformer consume sequence of tokens

➢ Fitting to the nature of text

➢ Text tokens: atomic semantically distinct, rich in information,

➢ Visual tokens: geometrically related and sparse in semantics

➢ Loss of spatial hierarchy information becomes more pronounced

➢ When working with high-resolution or high-dimension images
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1
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4
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Two Main Principles on Solving Real-world Problems

19

Start from Scientific Inquiry; Work Back to Solution

AI is a toolbox; always pick the right tool

1

2



Vision Transformers Use in Real-world Problems 
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Vision Transformers used in production, Examples:
a) microscopic pathology, b) X-ray CT road samples, c) weather prediction

4,096 patches 424 patches

Original Image
512x512

Canny Edge
Image

K0

K1

Morton Curve

Traditional Patching Proposed Adaptive Patching

Z-order Curve

Quadtree

Down-sampling

Transformer-based Model: ViT, UNTER, ViTUNET, Swin … etc  

~10x ↓Patches: ~100x ↓Compute and Memory

1 2 3

4 4
,

5

6
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Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥4)
while achieving the same dice score is from a real example of training 512⇥512 images from the PAIP [55] liver cancer
dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I . Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

fi rst down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K 2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’t 278

require additional revision to of the model or attention design. 279

I I I . A DA PTIVE PATCH ING FOR H I GH-RESOLUTION 280

SEGM ENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ”image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ⇥Z where Z is the resolution of image x . 294

Then, the sequence of non-overlapping patches can be noted 295

as { x i }
N
i = 1 2 R

N ⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = ( Z
P

)2 . For an image x 298
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Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79% .

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II : Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM ) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth
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2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II : Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM ) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5
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LLMs for 3D Segmentation

➢Using LLMs for Vision (ex: Vision Transformers)

➢Because of self-attention, the receptive field is the entire image!

➢Split image to patches (ex: 16x16)

➢Feed patches to LLMs

➢Segmentation

➢Larger patches → model learns global meaningful segmentation; produces poor boundaries

➢Smaller patches are qualitatively better

➢4x4 patches for 4K3 3D image = 1,000,000,000 tokens/image

Impact of Model Patch Size on the Segmentation Maps*
* Strudel et al. Segmenter: Transformer for Semantic Segmentation, ICCV’21 (https://arxiv.org/pdf/2105.05633.pdf)

https://arxiv.org/pdf/2105.05633.pdf
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Longer Sequence: a Challenge

➢The longer the sequence, the more the context that can be extracted

➢Ex: feeding an LLM entire books, library of papers, RAG, or segmentation

➢GPT-4-turbo → 128,000 tokens – GPT4-32k → 32,768 tokens    (1 Token = ¾ Word)

➢Compute and memory cost ∝ sequence2
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Methods for Longer Sequence

➢Alternative Mechanism for Attention

➢Hierarchal Training

➢Attention Approximation

➢Cache Blocking

➢Sequence Parallelism

➢Reduce Amount of Tokens Ingested

R
es

ea
rc

h
P

ro
d

u
ct

io
n

“Multi-agent architectures effectively scale token usage for tasks 

that exceed the limits of single agents.”
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Compatibility of Longer Sequence Approaches in Training

Alternative for 
Attention

Hierarchal 
Training

Attention 
Approximatio

n

Cache 
Blocking

Reduce 
Tokens

Sequence 
Parallelism

Alternative for 
Attention

Hierarchal 
Training

Attention 
Approximatio

n

Cache 
Blocking

Reduce 
Tokens

Sequence 
Parallelism

?? ?
?

?

?

?
?
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Methods for Longer Sequence

➢Alternative Mechanism for Attention
Monarch: use convolution to compute Attention

(FFT for convolution)

RetNet: a retention mechanism for attention modeling 
(parallel recurrency)

RWKV: Transformer in training; 
RNN in inference

(Linear attention) 

Positional Interpolation: downscale vs. extrapolating
(Extend window size) 

Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens
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➢Hierarchal Training

➢Train multiple transformers at different levels of abstraction

➢The transformer at the lowest abstraction level trains on the shortest sequence segments.

➢The transformer at the next higher level uses the previous level outputs as additional input to 

train on longer segments.

CrossViT Hierarchal ViT Three-level Transformer MEGABYTE

Methods for Longer Sequence
Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens
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➢Attention Approximation

➢Approximate self-attention operation through sparse sampling, lox-rank approx., infrequent update …

➢Note: “sparse” when talking about LLMs now mean sparse sequence, not sparse model

Longformer Sparse 
Transformer

Reformer
(Hash attention)

Big BirdRouting
Transformer

Local attention Global attention

Performers

Linear Transformers

In-frequent Update

LazyFormer

Methods for Longer Sequence
Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens
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➢Cache Blocking

➢No approximation

➢Can support longer sequences by blocking the attention matrix in scratchpad memory

➢Aggregate amount of work stays the same → support longer sequence, but not faster

FlashAttention FlashAttention2

Methods for Longer Sequence
Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens
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Methods for Longer Sequence
Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens

Nvidia Sequence Parallelism

*Not really sequence parallelism; parallelizes Dropout and LayerNorm

Long Sequence

*No significant speedup

• Sequence/context Parallelism

• Distributing long sequences among GPUs as short contiguous segments

• Communication overhead due to token inter-dependence MS DeepSpeed-Ulysses

*Not really sequence parallelism; full attention is still at each worker

DeepSpeed-Ulysses

Method
Comm Activation Parameter Attention Ease

complexity memory efficiency memory efficiency agnostic of use

ColAI-SP [Li et al., 2022b] O (M ) X x x x

Megatron-SP [Korthikanti et al., 2022] O (M ) X x X x

DS-Ulysses O (M / P ) X X X X

Table 1: Comparison of our work (DS-Ulysses) to other sequence parallelism methods.

While recent works in sequence parallelism address thememory overhead, they are lacking in communication efficiency,
thus limited in scaling capability. Similar to our work, all existing works in sequence parallelism partition the input data
along sequence dimension but differ in what input projections are partitioned and how partitions are aggregated and
communicated for attention computation.

Theauthors in [Li etal., 2022b] (henceforward calledColAI-SP) introduce ring self attention, a ring-likecommunication
collective in which query projections are local whereas key and values projections are transmitted in a ring-style to
compute global attention, resulting in communication complexity linear in message size, M . Megatron-LM sequence
parallelism [Korthikanti et al., 2022] approach is tightly integrated with Megatron tensor parallelism. Megatron LM
partitions sequence along sequence dimensions and applies allgather and reduce scatter collective to aggregateQKV
projections for attention computation. Communication complexity analysis shows that unlike our approach, Megatron-
LM sequence parallelism communication volume increase linearly with message size (M ) regardless of number of
compute devices. DeepSpeed-Ulysses on the other hand keeps communication volume consistent by increasing GPUs
proportional to message size or sequence length see 3.2 for more details.

Table 1 summarizes how DeepSpeed-Ulysses differs from other existing methods. DeepSpeed-Ulysses hascommunica-
tion efficiency advantage over the other two methods. It also benefits from leveraging ZeRO [Rajbhandari et al., 2020,
2021] optimization for model parameter partitioning across both sequence and data parallel groups. DeepSpeed-Ulysses
supports different kinds of attention and it is easy to use. Megatron-LM sequence parallelism is tightly integrated with
Megatron-LM tensor parallelism limiting both its memory efficiency and easy of use. ColAI-SP requires a different
(specific) kind of attention and is not easy to use. It is not clear how well ColAI-SP ring self-attention generalizes to
other attention types and mechanisms.

There are related works in sparse Transformer particularly focusing on full-attention approximation such as sparse
attention [Child et al., 2019, Choromanski et al., 2020, Zaheer et al., 2021, Beltagy et al., 2020]. There are also recent
works on single GPU memory and compute efficient attention. A popular example in this category is Flash attention
[Dao et al., 2022, Dao, 2023], which leverages known techniques such as tiling and recomputation for compute and
memory efficiency. These works are orthogonal to our work and were leveraged accordingly.

3 DeepSpeed-Ulysses Core Design

3.1 System Design

Figure 2: DeepSpeed sequence parallelism (DeepSpeed-Ulysses) design

Figure 2 shows the core design of DeepSpeed-Ulysses. Aswith the known transformer architecture, the design consists
of input sequencesN partitioned acrossP available devices. Each local N/P partition is projected into queries (Q), keys

4

Figure 2: Top (a): We use the same model architecture as the original Transformer but reorganize
the compute. In the diagram, we explain this by showing that in a ring of hosts, each host holds one
query block, and key-value blocks traverse through a ring of hosts for attention and feedforward
computations in a block-by-block fashion. Aswecompute attention, each host sendskey-valueblocks
to the next host while receives key-value blocks from the preceding host. The communication is
overlapped with the computation of blockwise attention and feedforward. Bottom (b): Wecompute
theoriginal Transformer block-by-block. Each host isresponsible for one iteration of thequery’souter
loop, while the key-value blocks rotate among the hosts. As visualized, a device starts with the first
query block on the left; then we iterate over the key-value blocks sequence positioned horizontally.
The query block, combined with the key-value blocks, are used to compute self-attention (yellow
box), whose output is pass to feedforward network (cyan box).

between hosts is denoted asB . It’sworth noting that our approach involves interactions only with
the immediately previous and next hosts in a circular configuration, thus our analysis applies to both
GPU all-to-all topology and TPU torus topology. Let’s consider the variables: block size denoted
as c and hidden size as d. W hen computing blockwise self-attention, we require 2dc2 FLOPs for
calculating attention scores using queries and keys, and an additional 2dc2 FLOPs for multiplying
these attention scores by values. In total, the computation demands amount to 4dc2 FLOPs. We
exclude the projection of queries, keys, and values, as well as blockwise feedforward operations,
since they only add compute complexity without any communication costs between hosts. This
simplification leads to more stringent condition and doesnotcompromise the validity of our approach.
On the communication front, both key and value blocks require a total of 2cd bytes. Thus, the
combined communication demand is 4cd bytes. To achieve an overlap between communication and

4

Ring Attention Fully Distributed Sequence
Ultra-Long Sequence Distr ibuted Transformer

Figure 2. (i) and (ii) show the difference without and with fused communications. (iii) shows distributed self-attention’s forward pass
with fused communications. Note that the distributed self-attention outputs are not concatenated. (iv) LSS Transformer’s Backward pass.
Model parameters, except the positional embedding, are synchronized through gradient averaging. (v) The distributed self-attention’s
backward pass with reduce-scatter.

is linearly transformed into query, key and value segments.
Then, two all-gather communications are independently op-
erated on the key and value segments into the collected K
and V . Fig. 2(ii) shows the fused communication operation
in the forward pass, requiring only a single all-gather com-
munication. x i is linearly transformed into query segment
Qi . Meanwhile, x i is gathered into a temporary collected
sequence x , before x is linearly transformed into the col-
lected key and value vectors. The same technique is also
applied to backward pass, reducing the total number of
communications from 6 to 4 per attention layer.

Principle 4: Gradient Averaging Technique to Synchro-
nizeGPUsand Avoid Concatenation. There are two issues
from Principles 1 and 3. First, since sequence parallel GPU
trains on the same model parameters but using different
input sequence segments, the gradients for the model pa-
rameters are different for each GPU. The second issue is
that the self-attention communication frequency needs to
be further reduced to achieve even better scalability and
parallel efficiency.

To address both issues, we use a gradient averaging tech-
nique to synchronize model parameters and avoid the con-
catenation for theGPUs’ individual self-attention outputs.
Therefore, communication frequency is reduced from 4 to
2 per attention layer. Figs. 2(iii)-(v) use a 2 GPU exam-
ple to demonstrate how this gradient averaging technique
is applied. In the forward pass for the self-attention in
Fig. 2(iii), a distributed query Qi is computed from the in-
put sequence segment x i . Meanwhile, the self-attention
input segments are gathered among GPUsbefore computing

collected K and V vectors using a single all-gather fused
communication, as explained before in Principle 3. Subse-
quent computations and memory storage are all distributed
and independently updated in the sequence dimension, pro-
ducing individual self-attention output for each GPU.

The individual self-attention outputs, however, are not con-
catenated across GPUs in Fig. 2(iii). Instead, the LSS
Transformer allows each GPU to use its assigned sequence
segment and individual self-attention output to compute a
partial cross-entropy loss and gradients in the backward
pass in Figs. 2(iv) and (v). Note that the backward pass
in Fig. 2(v) uses reduce-scatter as the backward operation
for the all-gather in the forward pass. Finally, the averaged
gradients arecomputed and used for synchronized model pa-
rameter updates before training on the next data batch. One
important technical detail to mention is that the averaged
gradients are not computed for the positional embeddings,
which are distributed parameters across GPUs and should
not be synchronized.

To understand why this gradient averaging technique can
avoid self-attention concatenation and synchronize model
parameters at the same time, let usassume that thepredicted
sequence output from transformer is y and its true label
is ỹ. The cross-entropy loss for the whole sequence, de-
noted as L (y, ỹ) , equals the average of individual token’s

loss: L (y, ỹ) = 1
l x

P l x
i = 1 L (yi , ỹi ) , where lx is sequence

length. According to the gradient summation rule, the gradi-
ent of L (y, ỹ) with respect to model parameters, denoted as
r L (y, ỹ) , equals the averaged gradient of each token’s loss:

r L (y, ỹ) = 1
l x

P l x
i = 1 r L (yi , ỹi ) . Therefore, there is no

Nvidia Context Parallel
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➢Reduce Amount of Tokens

➢Current practice: divide input to tokens, feed all tokens to the model

➢Feed the model less tokens: BEFORE tokens are ingested or DURING passing through the model

(Learned) Token Pruning Adaptive Patching (ViT)

Methods for Longer Sequence
Alternative for Attention

Hierarchal Training

Attention Approximation

Cache Blocking

Sequence Parallelism

Reduce Amount of Tokens

Patch the images in a ”smarter” way
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➢Very high resolution (up to 100,000 x 100,000 pixels)

➢Used in pathology

➢Ex: PAIP dataset

➢Pancreas

➢Diagnostic: Perineural Invasion

➢Segmentation with Vision Transformer (ViT)

➢Challenge:

PAIP 2023: Tumor cellularity prediction in pancreatic cancer and colon cancer (transfer learning)

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer 

* E. Zhang et al. Adaptive Patching for High-resolution 
Image Segmentation with Transformers, SC’24
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Adaptive Patching: Ingest Only the Data that Matters 

4,096 patches 424 patches

Original Image
512x512

Canny Edge
Image

K0

K1

Morton Curve

Traditional Patching Proposed Adaptive Patching

Z-order Curve

Quadtree

Down-sampling

Transformer-based Model: ViT, UNTER, ViTUNET, Swin … etc  

~10x ↓Patches: ~100x ↓Compute and Memory

1 2 3

4 4
,

5

6

1

2

3

Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥4)
while achieving the same dice score is from a real example of training 512⇥512 images from the PAIP [55] liver cancer
dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I . Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

fi rst down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K 2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’t 278

require additional revision to of the model or attention design. 279

I I I . A DA PTIVE PATCH ING FOR H I GH-RESOLUTION 280

SEGM ENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ”image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ⇥Z where Z is the resolution of image x . 294

Then, the sequence of non-overlapping patches can be noted 295

as { x i }
N
i = 1 2 R

N ⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = ( Z
P

)2 . For an image x 298

4 /12
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(a) 5122 @100% (b) Dice Score:100% (c) 73.32% (d) 77.31% (e) 78.32%

(f) 4, 0962 @1.5% (g) Dice Score:100% (h) 71.32% (i) 75.77%
(j) 79.63%

(k) 8, 1922 @0.39% (l) Dice Score:100% (m) 71.32% (n) 75.77% (o) 79.63%

(p) 32, 7682 @0.024% (q) Dice Score:100% (r) 69.88% (s) 74.96% (t) 78.98%

(u) 65, 53462 @0.006%

(v) PAIP dataset images

(w) Dice Score:100%

(x) Ground Truth

(y) 69.88%

(z) TransUNet

(aa) 75.31%

(ab) UNETR

(ac) 77.77%

(ad) APF-UNETR

Fig. 2: Example of segmentation quality for PAIP dataset. From 4K 2 to 64K 2 we zoom-in to show a portion of the image.

V. CONCLUSION557

We propose a solution that adaptively patches high-558

resolution images based on image details, drastically reducing559

the number of patches fed to vision transformer models. This560

pre-processing approach incurs minimal overhead. We achieve 561

segmentation quality for 64K 2 images comparable to SoTA 562

models operating on no more than 4K 2 , at much higher 563

efficiency (geomean speedup of 6.9⇥). 564

9 /12

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer 
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Results: Speedup
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Results: Quality

➢Since we can reduce the sequence length

➢We could increase the patch size, get better results (for the same compute budget)
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AI for Cone-beam X-ray Computed Tomography

➢X-ray CT widely used

➢Current Generation X-ray CT rely on cone-beam scanners

➢Higher quality; high-resolution real-time distributed reconstruction is intractable

➢Use ViT to do geometry correction to make the real-time reconstruction tractable

➢4K3 in 16 seconds and 8K3 in a few minutes (on 1,024 GPUs) 

* P. Chen, M. Wahib et al. Scalable FBP decomposition for cone-beam CT reconstruction, SC’21
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38high-resolution Bumblebee generated on ABCI supercomputer
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5
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SoTA Models Overwhelmed by High-resolution

➢In Segmentation
➢ We must map encoded features back to full-resolution pixel predictions

➢ CNN mask decoder (too much memory required)

Meta’s SAM 2 Model** https://arxiv.org/pdf/2408.00714

https://arxiv.org/pdf/2408.00714
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Symmetrical Hierarchical Forest with Pretrained ViT

Encoder for High-Resolution Medical Segmentation 

Remove Decoder
Apply a reverse depatching scheme
to the output embeddings of the
transformer encoder, eliminating the
need for convolution-based decoders

* E. Zhang et al. Under review
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# #

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Edge Image (b) Sequence Length=256 (c) Sequence Length=1024 (d) Sequence Length=4096

(e) Edge MRI (f) Sequence Length=260 (g) Sequence Length=1030 (h) Sequence Length=4096

Figure 2. Average quadtree patch size [9.37, 20.21, 30.73] of training images in PAIP lead to empirical linear scaling of the corresponding
average sequence length [677.7, 286.9, 127.5], for different split values [20, 50, 100].

(a) v = 20, Avg patch size=9.37 (b) v = 50, Avg patch size=20.21 (c) v = 100, Avg patch size=30.73

(d) v = 20, Avg length=677.7 (e) v = 50, Avg length=286.9 (f) v = 100, Avg length=127.5

Figure 3. Average quadtree patch size [9.37, 20.21, 30.73] of training images in PAIP lead to empirical linear scaling of the corresponding
average sequence length [677.7, 286.9, 127.5], for different split values [20, 50, 100].

8

Symmetrical Hierarchical Forest with Pretrained ViT

Encoder for High-Resolution Medical Segmentation 
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Can ViT Learn Where to Look?

➢ HUMANS tell the model where to look

➢ Can the model learn where to look?

➢ by being fed the spatial hierarchy

➢

+
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Visual Scene Recovery from Wi-Fi CSI

➢CSI-Inpainter: CSI-guided obstacle removal

* Chen et al, Trans-Inpainter: A Transformer Model for High Accuracy Image Inpainting from Channel State Information, IEEE IoT’25
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Visual Scene Recovery from Wi-Fi CSI
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5
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Tokenizing Spatio-temporal Data is Tricky

ViViT

TimesFormer

Mask2Fromer
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How to Tokenize Spatio-temporal Data

➢Different tokenization schemes aligned with adaptive pathcing

We observe how Local and Global Frame Selection operate on a frame-by-frame basis to form quadtrees, while the other
three schemes work across three dimensions. Among these three, Batch and Temporal-Spatial Frame Selection divide the time
dimension, with the former using even divisions and the latter using uneven divisions.

20

12

Batch	Frame

FINAL

Batch Frame
Selection

Time

19

11

Fixed	Temporal

FINAL

Fixed Temporal
Frame Selection

Time
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Global Frame Selection

FINAL
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Adaptive Patching for Videos

➢For videos we adaptively patch temporally 

➢merging spatial and temporal adaptiveness? 

customize the adaptive scheme based on the nature of the input dataset? AP as a means   

for compression, followed by a scheme to arrange patches to recreate the input video?

2

Video	Adaptive	Patching	Workflow

1 2

34

......

3D patches
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Application in Video Action Recognition

➢ We use the Video Vision Transformer (ViViT) model for this 

task, containing attention in the spatial and temporal dimensions

➢ AP able to achieve comparable metrics with up to 4x memory 

reduction while maintaining the same number of patches
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Application in Video Action Recognition

➢ We use the UNEt TRansformers (UNETR) model for this task, 

combining a transformer encoder with a convolutional decoder

➢ AP able to achieve comparable metrics with up to 8x memory 

reduction while maintaining the same number of patches
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5
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ORBIT-2: Scaling Exascale Vision Foundation 

Models for Weather and Climate Downscaling 

Fig. 1: A generalized AI architecture diagram for state-of-the-art downscaling foundation models. Note that upsampling is used
for each channel prior to training blocks to reduce downscaling uncertainty.

downscaling at high resolution. For instance, Prithvi achieves
12 km resolution over Europe but is restricted to 50–60 km
globally due to the quadratic scaling of ViT self-attention [20].
ViTs divide spatial data into patches, treating each patch as a
token. As resolution increases, the number of tokens grows,
and self-attention computes pairwise interactions among all
tokens, resulting in quadratic growth in memory and compute
demands. Unlike Natural Language Processing (NLP) models,
which operate on one-dimensional text sequences and scale to
over one million tokens [21], ViTs handle high-dimensional
spatial inputs with complex dependencies across multiple axes,
making long-sequence scaling significantly more computation-
ally intensive. As a result, the longest ViT sequence reported
to date is limited to 188k tokens [22]. This constraint directly
limits the maximum data resolution ViTs can process, as
sequence length scales proportionally with spatial resolution.

Another significant challenge is the uncertainty associ-
ated with multi-variable downscaling, as translating coarse-
resolution data to fine scales is a highly ill-posed inverse prob-
lem— one that becomes even more complex when multiple
climate variables are involved. Unlike super-resolution tasks
in computer vision [23], [24], where Red-Green-Blue channels
represent the same physical quantity, climate variables such as
temperature, humidity, and wind are governed by distinct yet
interrelated physical processes. This heterogeneity increases
the difficulty of learning consistent mappings and exacerbates
uncertainty in predictions. A common mitigation strategy is to
upsample coarse inputs prior to training [18], [19], which can
help reduce uncertainty but significantly increases sequence
length and, in turn, computational cost due to ViT’s quadratic
complexity. Moreover, upsampling introduces artifacts that can
propagate through the model, limiting its effectiveness.

One further limitation of existing downscaling founda-
tion models is their restricted model scale. For example,
Prithvi [18] is constrained to 1.4 billion parameters, primarily
due to the computational difficulty of scaling ViTs for high-
dimensional spatiotemporal data. A major advancement in this
area is the Oak Ridge Base AI foundation model for Earth
System Predictability (ORBIT) [17], which leverages hybrid
sharding and orthogonal parallelisms to scale ViTs to 113
billion parameters— five times larger than previous ViTs and
more than 100×larger than typical climate models. W hile OR-
BIT represents a major milestone in large-scale Earth system

modeling, it is specifically designed for temporal forecasting
and does not address spatial downscaling. In particular, it does
not resolve the ViT long-sequence bottleneck nor mitigate the
uncertainty associated with inverse downscaling problems.

To address the limitations of current foundation models in
high-resolution downscaling and to extend the ORBIT frame-
work, we introduce ORBIT-2— a scalable and computationally
efficient foundation model for climate downscaling. At its
core is a novel ViT architecture, Residual Slim ViT (Reslim),
specifically designed to bypass the high computational cost
associated with traditional upsampling-based approaches. Un-
like existing models that upsample inputs to mitigate un-
certainty— resulting in quadratic increases in memory and
computation— Reslim operates directly on adaptively com-
pressed spatial inputs, significantly reducing sequence length
while preserving critical information. It preserves accuracy and
reduces uncertainty through a lightweight residual learning
architecture, enabling efficient, low-overhead predictions. Ad-
ditionally, both training and inference are framed as a Bayesian
Estimation problem, incorporating a Markov Random Field
Total Variation prior to further constrain uncertainty and
improve spatial consistency.

Complementing this architecture is the Tile-Wise Sequence
Scaling Algorithm (TILES) that reduces ViT’s self-attention
complexity from quadratic to linear. It works by dividing
images into overlapping tiles, each processed in parallel on
separate Graphical Process Units (GPUs) using localized self-
attention. Each tile’s downscaled outputs are then seamlessly
merged to the full image. This strategy enables efficient and
scalable ViT-based downscaling, making ultra-high-resolution,
global-scale applications computationally feasible.

Leveraging the above innovations, ORBIT-2 sets a new
benchmark for AI-driven climate and weather downscaling
through four key breakthroughs:
• Efficient Reslim Architecture by operating directly on

compressed inputs, achieving over 660⇥ speedup compared
to standard ViTs— without compromising accuracy.

• Longest ViT Sequence Length by scaling ViT sequence
lengths to unprecedented levels— up to 4.2 billion tokens for
a 9.5M parameter model and 671 million tokens for a 10B
model— surpassing the prior state-of-the-art of 188K tokens
by several orders of magnitude [22]. This eliminates the
long-standing sequence bottleneck, enabling global down-
scaling at resolutions as fine as 0.9 K ilometer (km).

Fig. 2: Reslim architecture is split into main and residual paths. No upsampling is used for the main path for ViT training,
leading to reduced computations. Residual path is used to condition prediction for reduced uncertainty.

• Scalable Large M odel Training by training models with
up to 10 billion parameters across 32,768 GPUs, achieving
92–98% strong scaling efficiency and sustained throughput
of up to 1.8 ExaFLOPS.

• State-of-the-Art Accuracy achieving R2 scores of 0.98 for
precipitation and 0.99 for temperature at 7 km resolution
over the continental United States, setting a new standard
in high-fidelity downscaling performance.

I I I . BACK GROUND & STATE OF THE A RT

Figure 1 illustrates the generalized architecture of leading
downscaling foundation models, including Prithvi [18] and
ClimateLearn [19]. The inputs consist of low-resolution data
with multiple atmospheric physical variables, normalized and
bias corrected, and each channel of the architecture reads data
for a distinct variable. To address downscaling inverse prob-
lem uncertainty, current models upsample coarse-resolution
inputs, either via interpolation [19] or convolution [18], before
training. This upsampling process is crucial, as it provides
a higher-resolution baseline for ViT training, mitigating un-
certainty from the inherently ill-posed nature of the multi-
variable downscaling problem, thereby improving accuracy
and uncertainty. Once upsampled, multi-channel inputs are
aggregated into a single-channel representation in feature
space, a step that can be performed using either cross-attention
mechanisms [25] or shallow convolutional layers [18], [19].
This aggregated representation is then trained by the ViT
training blocks, consisting of self-attention and feedforward
sub-layers. Finally, the trained output is projected back from
feature to image space for each individual physical variable.

This approach, however, introduces major challenges. Up-
sampling coarse-resolution input data before training increases
the sequence length, which increases in proportion to the
resolution increase, causing a quadratic increase in memory
and computations due to ViT’s self-attention mechanism.
This severely limits scalability and resolution, leaving the
long-sequence bottleneck unresolved. Prithvi, for example, is
limited to relatively coarse 50-60 km resolution for global
downscaling. To address this, prior work proposed both AI
architecture and High Performance Computing solutions.

Architecture solutions. To mitigate this, architectures like
Swin Transformer alleviate some of the computational burden
by introducing a hierarchical architecture with shifted window
attention [26], [27]. Instead of processing the entire image
at once, Swin Transformer partitions the image into smaller,
non-overlapping local windows, where self-attention is com-
puted independently within each window. To capture global
spatial dependencies, features learned from local windows
are aggregated into global features through an architecture
hierarchy. W hile this reduces computing complexity, Swin
Transformer has fundamental limitations and its layers of
architecture hierarchy must scale proportionally with higher
resolution, making it unsuitable for foundation models that
needs a single model to generalize across diverse datasets
with varying resolutions. Additionally, Swin Transformer’s
model size grows with the architecture hierarchy, shifting
the computational bottleneck from long-sequence processing
to large-model scaling. Consequently, Swin Transformer can
only scale up to 147K sequence length on standard 3-channel
images [27], far below what is needed for high-resolution,
multi-variable downscaling.

Other sparse attention architectures, such as MaxViT [28],
attempt to mitigate computational cost by sampling self-
attention computations. W hile this reduces complexity, it
comes at the expense of accuracy degradation when the sam-
pling ratio is too high, and it does not address the fundamental
quadratic complexity long-sequence problem.

Scaling algorithm solutions. Besides architecture innova-
tions, scaling algorithms, such as sequence parallelism [22],
[29], [30], has been proposed as an alternative strategy for
scaling ViT sequence length. It distributes image patch tokens
across GPUs for parallel computing, alleviating memory con-
straints. However, because self-attention requires each token
to interact with all other tokens from every other GPU,
sequence parallelism incurs substantial inter-GPU communi-
cation overhead and limits its scalability. More critically, it
does not resolve the fundamental quadratic complexity, which
causes computational costs to grow rapidly with increased
downscaling resolution. As a result, current ViT sequence
parallelisms are limited to a maximum of 188K token sequence

- Operating directly on compressed inputs 
- Condition prediction for reduced uncertainty 

lengths [22], which remain insufficient for high-resolution
multi-variable downscaling.

It is also important to note that other commonly used paral-
lelisms— such as Fully Sharded Data Parallelism (FSDP) [31],
Tensor [32], pipeline [33], [34], [35] and hybrid sharded
parallelisms [17] are all designed to scale model sizes, rather
than long sequences of high-resolution and high-dimensional
spatial data. Consequently, none of the existing model paral-
lelisms fundamentally overcome the long-sequence bottleneck
in ViTs required for high-resolution global downscaling and
there is an urgent need to develop computing efficient and
massively parallel architecture and scaling algorithm.

IV. I NNOVATION REA L IZED

A. Reslim: A Lightweight ViT Architecture for Scalable and
Uncertainty-Aware Downscaling

Unlike existing foundation models that rely on input up-
sampling to establish downscaling baselines, which leads
to increased sequence length and high computational cost,
ORBIT-2 introduces Residual Slim ViT (Reslim), a highly
efficient architecture that significantly reduces training time
and memory usage without compromising accuracy. The key
innovation of Reslim is its ability to operate directly on low-
resolution and adaptively compressed inputs, drastically reduc-
ing sequence length and computational burden. To counteract
the uncertainty typically introduced by bypassing upsampling
prior to ViT training, Reslim incorporates Bayesian estimation
and a residual convolutional learning path, enabling high
accuracy while maintaining efficiency. Its non-hierarchical
design further promotes generalization across datasets with
varying spatial resolutions, making it well-suited for scalable,
foundation-level Earth system modeling.

Main ViT Path. Figure 2 illustrates the Reslim architecture.
After tokenizing each low-resolution physical variable into
feature embeddings, the model proceeds along two architec-
tural paths: the main ViT and residual paths. Crucially, the
main path eliminates input upsampling, avoiding the sequence
length inflation and the quadratically increased computing cost
typical of ViT architectures.

First, the main path uses a cross-attention module to aggre-
gate multi-variable embeddings into a unified representation,
effectively collapsing the variable dimension. A learnable res-
olution embedding encodes the desired output resolution and
is added to the feature embedding, enabling resolution-aware
predictions— an essential capability for modeling resolution-
dependent Earth system behaviors. Next, an optional adaptive
spatial compression module, which will be explained further in
the next paragraph, reduces the sizes of the embeddings before
they are passed through ViT training blocks. W hen enabled,
this module compresses spatial features; otherwise, it acts as
an identity function. After processing, a decoder comprising
convolutional layers and linear projections reconstructs the
high-resolution output.

Adaptive Spatial Compression. Our objective is not only
to train directly on low-resolution inputs, but also to further
reduce token count and computational cost through compres-
sion. Reslim achieves this via an adaptive spatial compression
technique, inspired by adaptive image patching and mesh

Fig. 3: Comparison with and without adaptive spatial com-
pression. Each yellow grid is an image patch.

refinement methods [36]. After aggregating multi-variable
features (purple block in Fig. 2), the model projects the
embedding back into image space and recursively partitions
it into spatial quadrants using a quad-tree structure. Partition-
ing continues for any quadrant where the estimated feature
density— computed via Canny edge detection— exceeds a pre-
defined threshold, terminating when a minimum patch size is
reached or below predefined threshold.

This approach enables finer-grained learning in feature-rich
regions through smaller patches, and coarse-grained learning
to smoother regions through larger patches, where less detail is
needed. Figure 3 illustrates an example image after variable-
aggregated features are mapped back to image space. Com-
pared to conventional uniform patching (Fig.3(a)), where each
grid represents an image patch token, the adaptive spatial com-
pression method (Fig.3(b)) reduces the number of patch tokens
by 7x in this figure example, significantly decreasing sequence
length and computing cost. After ViT training blocks, the
decompression module reconstructs the high-resolution output
from the compressed embeddings.

Residual Learning. Reslim improves computational effi-
ciency by removing the upsampling step from the main ViT
path and training directly on low-resolution, spatially com-
pressed inputs. This design dramatically shortens sequence
lengths and reduces the quadratic computational cost typically
associated with ViT training. However, bypassing input up-
sampling introduces uncertainty, as conventional foundation
models rely on upsampled inputs to provide a coarse down-
scaling baseline. Reslim addresses this challenge through two
complementary innovations: residual convolutional learning
and a Bayesian estimation objective.

The residual convolutional path reintroduces upsampling
outside the main ViT path, using lightweight convolutional
layers with linear complexity. This path generates a high-
resolution approximation that is added to the ViT output before
loss computation. Such design yields two major benefits:
(1) it avoids the expensive quadratic cost of increasing the
ViT sequence length due to upsampling. The upsampling is
moved to the residual path, where convolutional layers have
linear complexity to input size and thereby upsampling in the
residual path incurs minimal computing cost. (2) it simplifies
the learning task by letting the ViT focus on predicting the
residual difference between the convolutional approximation
and the ground truth, rather than the full downscaling trans-
formation. This soft constraint stabilizes training, enhances
physical plausibility, and significantly reduces downscaling
uncertainty. As a result, Reslim achieves high downscaling
accuracy with significantly reduced computations compared

Fig. 6: (a) TILES sequence scaling algorithm speedup across GPUs, compared to an 8-GPU baseline that does not utilize
tiling. (b) Strong scaling efficiencies up to 4096 nodes (32,768 GPUs) for various model sizes, maintaining a strong scaling
efficiencies of 92-98% at 4096 nodes.

(a) Evaluation metr ics for minimum temperature (K elvin)
M odel Size R2 RM SE RM SE σ1 > 68% RM SE σ2 > 95% RM SE σ3 > 99.7% SSIM PSNR

9.5M 0.991 3.812 4.652 9.704 15.497 0.958 29.02
126M 0.999 0.505 0.630 1.025 1.491 0.987 45.96

(b) Evaluation metr ics for total precipitation (millimeter/day)
9.5M 0.975 0.146 0.166 0.344 0.449 0.931 29.03
126M 0.979 0.135 0.154 0.296 0.365 0.932 30.20

TABLE IV: Comparison of downscaling accuracy for temperature and precipitation over the U.S. using models with 9.5M and
126M parameters. Results highlight performance gains from increased model capacity.

The seventh column of Table II(a) reports the average
time to downscale each hourly sample. The eighth column
shows the speedup from Reslim relative to the ViT baseline.
Notably, the Reslim architecture avoids expensive upsampling
operations by operating directly on low-resolution inputs,
resulting in significant computational savings. For the smaller
622! 156 km task, Reslim achieves a 660×speedup over ViT
at the same number of GPUs while maintaining comparable
accuracy, as measured by PSNR and SSIM . This demonstrates
the effectiveness of Reslim’s residual learning design and
Bayesian training loss in maintaining predictive accuracy
while reducing computational cost. For the larger 112! 28
km resolution task, the ViT model fails due to out-of-memory
(OOM ) errors. Consequently, a direct speedup comparison is
not available, although Reslim completes the task efficiently
and maintains high accuracy.

Table II(b) explores further speedup gains from adaptive
spatial compression and sequence tiling, compared to the
Reslim baseline (Table II(a), row 5), all using 128 GPUs.
Adaptive compression with a 32×sequence length reduction
yields up to a 7.1×speedup with no loss in PSNR or SSIM .
Further compression yields diminishing returns due to quad-
tree overhead. Tiling provides up to 1.9×with 16 tiles per
sample. Further tiling introduces excessive halo padding over-
head and degrades computing performance. Accuracy remains
stable across all settings.

B. Maximal Sequence Length Scaling

Table II I presents sequence length and resolution scaling
performance of various model architectures and strategies,
demonstrating how the combination of spatial compression,

tiling, and the Reslim architecture enables extreme sequence
lengths. We achieve sequence lengths of up to 4.2 billion
tokens (global downscaling resolution of 0.9 km) for a 9.5M
parameter model and up to 671 million tokens (global resolu-
tion 2.3 km) for a 10B parameter model. These results surpass
the state-of-the-art in sequence scaling by more than 22,000×,
compared to state-of-the-art sequence parallelism of 188K
tokens [22], and the Swin Transformer at 147K tokens [27].

All experiments utilize 23 input variables (12 atmospheric,
6 surface, and 5 static) and produce 18 output variables
(excluding static inputs). Using a standard ViT with 9.5M
parameters, the maximum sequence length is limited to 25K
tokens (coarse 156 km global resolution) when using 8 GPUs.
Scaling this ViT model to 10B parameters results in an out-of-
memory (OOM ) error, making global downscaling infeasible.

In contrast, Reslim demonstrates significantly better scaling.
W ith just 8 GPUs, a 9.5M parameter Reslim model scales to
298M tokens at a 3.5 km global resolution. This corresponds
to an output tensor of shape [5760, 4520, 18], assuming a 2×2
image patch size. Increasing the number of GPUs to 32, we
achieve 466M tokens at 2.7 km resolution.

W hen combining Reslim with both spatial tiling (16 tiles per
sample) and adaptive spatial compression (4x) techniques, sub-
stantial improvements are obtained. W ith these methods, the
model achieves 1.1B tokens on only 8 GPUs, corresponding
to downscaled output of size [11520, 23040, 18]. This result
is made possible through several key compression techniques:
• Channel aggregation in Reslim (see Fig. 2) reduces the

sequence length by 18×by aggregating channels.
• Spatial tiling divides the sample into 16 tiles, reducing the

sequence length per GPU by 16×.

* Wang et al. To appear SC’25 (Gordon Bell Finalist)



Distributed Cross-Channel Hierarchical 

Aggregation for Foundation Models

Distributed Tokenization

For high number of channels: distribute
tokenization and implement a hierarchical
strategy for channel aggregation.

* Tsaris et al. To appear SC’25
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ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder) 

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5



Genome/Transcriptome

Other Phenotypes

Images

Omics lipidome

Neural Activities

Proteins
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Real-world Problem Covering Almost all the 
Challenges Presented so Far
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Infrastructure Inspection Paradigm Shift

Image Acquisition

Experimental

Facility
Computational

Facility

Reconstrution

and Segmentation

Computational

Facility

AI Model Training

High-resolution XCT Imaging + 3D image AI  Analytics

Transformer-based Foundation Model

Paradigm Shift in Infrastructure Inspection Technology 

High performance 
Imaging + AI + 

analytics

- Replace traditional engineering
- Full fusion of imaging and AI

https://tinyurl.com/yvddayb3

https://tinyurl.com/yvddayb3
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Total Road Length in Japan is ca. 1.21 Million KMs

* Source: MLIT, Japan https://www.mlit.go.jp/road/road_e/pdf/RoadMaintenance.pdf

Total 
130,000km of 

highway to 
maintain

https://www.mlit.go.jp/road/road_e/pdf/RoadMaintenance.pdf


淀川左岸線（2期）建設中
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Highway Network West Japan (Osaka, Kyoto, Kobe)

* Source: Sakai @Hanshin Highway



• Mechanical inspection

• Time: 10s of years

• Cost: $ Billions

• Camera/laser Imaging technology

• Good for fast screening of visible surface cracks, depressions etc

• Not a reliable technology for understanding sub-surface conditions
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How to Inspect Roads for Maintenance?

Fatigue test: Accelerated Crack Simulation
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Mechanical Inspection

“Actual-scale test track” by Taisei-Rotech
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Vehicles Extracting 100s Samples per Day 

• Core samples extraction machines mounted on vehicles 

+
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Collecting Samples

• Extract cylindrical samples from core of asphalt layers

* Example: if one sample every 10KM, then 130,000 / 10 = 13,000 samples
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Scan Samples with X-ray

• Scan (2D projections) at RIKEN Spring-8 Synchrotron 

The synchrotron radiation facility RIKEN SPring-8
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Move Data to RIKEN-CCS Fugaku

• Move projections data to R-CCS (Fugaku) 

81923

2TB

10,000s of

Samples* Fugaku
Fastest way to transfer data is to ship HDD!

Use advanced compression and data management approaches

* ~2,000x amount of data used to train ChatGPT: Petabytes
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High Resolution 3D Image Reconstruction

• High-performance high-resolution X-ray CT image reconstruction
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H3: High-throughput, High-perf., High-resolution CT

H3

End-to-end pipeline to reconstruct 
10s of 16K resolution 3D images in 

one go (full-system scale)
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End-to-end Image Reconstruction

Cores were collected from road surfaces used for 20 to 30 years on the Hanshin Expressway. 

Floor slab (concrete) Pavement (asphalt)

～
7

0
m

m

* Courtesy of Kentaro Uesugi (RIKEN Spring-8)

High-resolution 4,1923 Asphalt Core generated on Fugaku in 12 seconds (12,288 nodes: ~7% Fugaku)
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Training a Foundation Model

ViT Model with SAP

Step 1: Label-Free Self-Supervised Pre-Training

Simulated LabelSimulated DataSimulatingMAE

Step 2: Fine-Tuning with Simulated Data and Labels

Masked Data

Real data distribution

X-ray source setting

Attenuation coefficients 

QuadTree

Reconstructed Volumes 

(Section 4)

Inpaint

With QuadTree

SAP
Inverse

Microstructure Label Map Paired Simulated CT Slice

a) b)c) d)

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79% .

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II : Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM ) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

Several Challenges
Sequence length, tokenization, shifting 
bottleneck, and NO LABELED DATA
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ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II : Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM ) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth
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Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth
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AI Can Provide Real Value to Science
(High Performance Computing and Data management is a challenge)

6

microscopic pathology, Infrastructure Inspection, weather prediction
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Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥4)
while achieving the same dice score is from a real example of training 512⇥512 images from the PAIP [55] liver cancer
dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I . Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

fi rst down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K 2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’t 278

require additional revision to of the model or attention design. 279

I I I . A DA PTIVE PATCH ING FOR H I GH-RESOLUTION 280

SEGM ENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ”image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ⇥Z where Z is the resolution of image x . 294

Then, the sequence of non-overlapping patches can be noted 295

as { x i }
N
i = 1 2 R

N ⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = ( Z
P

)2 . For an image x 298
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Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G | = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II : Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset M odel Patch Size GPU (hours) Epochs Dice (% )

780 unique volumes
w/simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K 2

resolution often leads to out-of-memory (OOM ) issues due to
the large input and output sizes. To prevent OOM , convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38% ).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98% ). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K 2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth
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(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.
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Fig. 12: Example of ROVAI ’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.
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SAM 2[8] 1282 5,120 1,000 85.98
Our M odel 22 5,120 1,000 94.79
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